Proof-Number Search
and
Transpositions

Martin Schijf
University of Leiden

August 1993

Contents

Preface
1 Introduction
2 Search trees

3 Trees and proof-number search
3.1 Informal description L
3.2 Definitions Lo e
3.3 Algorithms
3.4 Enhancements, (dis)advantages and speed-up

4 DAGs and proof-number search
4.1 The problem e e
4.2 Most-proving node exists oL
4.3 Theoretical algorithm L L
4.4 Practical algorithm oo oo
4.5 Results. o e
4.6 Enhancements, additional work and speed-up

5 DCGs and proof-number search
5.1 The problem L
5.2 Most-proving node exists
5.3 Theoretical algorithms L
5.4 Practical algorithms
5.5 Results . . . o . o e

6 Conclusions
A DAG results on Tic-tac-toe
B DCG results on Chess

Bibliography

iii

35
35
36
40
42
45

49

51

53

57

ii

CONTENTS

Preface

This thesis gives a description of proof-number search in combination with trans-
positions. I would like to thank a number of people who helped me with the many
problems that arose during the research.

In the first place I'd like to thank my supervisors Ida Sprinkhuizen-Kuyper (Uni-
versity of Leiden), Victor Allis and Jos Uiterwijk (both of the University of Lim-
burg, Maastricht) for their support during the research and the time they have
spent in correcting this thesis.

Special thanks goes to Dennis Breuker who accommodated me during my visits
to the University of Limburg.

iii

Chapter 1

Introduction

Proof-number search (Allis et al., 1991; Allis et al., 1994), a search method derived from
conspiracy-number search (McAllester, 1988) is a recent search method that has been devel-
oped while determining the game-theoretical value of Connect Four, Qubic and Go-Moku. It
has also been applied to Awari and Othello. The present research initially dealt with the ap-
plication of proof-number search to Nine Men’s Morris. It then became clear that many equal
positions were analysed more than once by proof-number search. This could be prevented
by making use of transposition techniques. These techniques were not directly applicable to
Nine Men’s Morris, because in this game it is possible to repeat positions.

To understand and find a solution to this problem it is necessary to have a close look at the
basic principles of proof-number search. It turned out that the problems existed not only in
the ‘repetition case’, but also if proof-number search makes use of transpositions encountered
via different move sequences (even for games without repetition of positions).

This thesis describes how proof-number search can be applied to three different search
‘structures’. The first one is the search tree. In this structure no attention is paid to transpo-
sitions. Chapter 3 explains formally the way proof-number search works in trees. Thereafter
transpositions are introduced converting a tree into a directed acyclic graph. The problems
of proof-number search in this structure will be described in chapter 4. In chapter 5 proof-
number search is described in a directed cyclic graph, a structure in which a transposition
can also be a repetition. Some basic terms of game-tree search are first described in chap-
ter 2. The last chapter contains the conclusions about the application of transpositions in
proof-number search.

CHAPTER 1. INTRODUCTION

Chapter 2

Search trees

Zermelo (1912) proved that for each chess position (except for end positions) a best move
exists. Naturally this holds not only for chess, but for all kinds of two-person zero-sum games.
These are games in which a win for one player implies an equal loss for the other.

A best move in a position P can be obtained by examining all successors p;...p, of P,
the positions that are obtained by playing one move in P. If a p; is won for the player to
move in P then the move leading to p; is a best move. If no such move exists the move that
leads to a draw position is best. If all successors of P are lost then any move is a best move.

A game tree can be built to investigate whether a position P is a win, draw or loss for
the player to move in P. This is done by generating all successors p; of P and creating an
edge from P to p;. If a successor is an end position (check mate for instance), the result is
determined by the rules of the game. This result can be represented by values -1, 0, 1 for a
lost, drawn or won position, respectively. In some applications only two values, -1 and 1, are
used, representing a non-win (loss or draw) and a win, respectively.

For each successor p; that is not an end position, all successors of p; are generated (by
considering the opponent’s moves in p;) and so on, until each position in the tree has been
expanded (e.g the successors are already generated) or is an end position. The so created
game tree contains three types of positions:

1. positions in which player is to move.
2. position in which opponent is to move.
3. end positions.

The game-theoretical value (the value that is obtained by optimal play of both player and
opponent) of each internal position in the tree can now be computed with the aid of the values
of its successors (termed children). Because all values will be computed with respect to the
player to move in the position represented by the root of the tree (player), the value of any
position of the first type is equal to the highest value (the maximum) of its children. If, on
the other hand, the opponent is to move in a position (the second type), the value of that
position is equal to the lowest value of its children (the minimum), because a low value with
respect to player means a high value with respect to opponent. This is an informal description
of the Minimaz procedure (Neumann, 1928). Formally, the game theoretical value of any

3

4 CHAPTER 2. SEARCH TREES

Figure 2.1: A game tree with game-theoretical values.

position P is given by:

Maz e chitdgren(p)(9tv(pi)) , if player to move in P
Min,, cchitdren(p)(gto(pi)) , if opponent to move in P

gtv(P)=1< -1 , if P is an end position which is lost for player
0 , if P is an end position which is drawn for player
1 , if P is an end position which is won for player

Figure 2.1 gives an example of a game tree with game-theoretical values. In this tree positions

in which player is to move are denoted by squares. Because their values are obtained by
maximizing the values of their children, these nodes are called maz nodes. The circles represent
the positions in which opponent is to move. These nodes are similarly called min nodes. End
positions are represented here by dots. Because of the type of nodes, player is also called max
player and opponent min player.

A partial game tree is called a search tree. In a search tree, it is possible that not all
nodes have been expanded. Such a not expanded node is called a terminal. The terminals
are not expanded, because the search to the determination of the game-theoretical value is
not finished yet and to obtain this value some nodes still have to be expanded (the values of
these terminals are still unknown), or because it is not necessary for the determination of the
game-theoretical value (the not expanded part of the game tree is then called ‘pruned’). In
figure 2.1, for instance, it suffices to determine three terminals (the left three) to prove that
the value of the root is 1.

Many search techniques that try to minimize the number of nodes visited in the game
tree have been developed, of which the a-8 technique (Knuth and Moore, 1975) is the most
widely-used. One alternative technique is proof-number search and will be explained in the
next chapter.

Chapter 3

Trees and proof-number search

3.1 Informal description

Proof-number search or pn-search is a game-tree search method to determine the game-
theoretical value of a given position. It is based on a two-valued evaluation, so each node
in the tree can have one of the possible values a ‘win’ or a ‘loss’ (or still be ‘unknown’). As
long as the value of the root in the tree is unknown we have to get more information by
expanding or evaluating terminals in the search tree. It may not be necessary to determine
the values of all terminals, so the problem is which terminal to examine first to determine
the game-theoretical value of the root as quickly as possible. Figure 3.1 shows a search tree.
Each node in the tree has an unknown value. We want to determine the game-theoretical
value of the root, node a. Because this game-theoretical value is a ‘win’ or a ‘loss’ we will
seperately examine both possibilities.

To prove that the value of node a is a win, it is enough to prove that at least the value
of one of its children is a win, because a is a max node. In chapter 2 was described that the
player at a max node (the max player) always chooses the move that leads to a position with
a win value (if there exists one), because this position has the highest value and the value
in a max node is obtained by maximizing the values of its children. In other words if the
value of a child of a max node is a win then the value of the max node is a win. So it can be
concluded for figure 3.1 that the value of node « is a win if the value of node b or node c is.
The player at a min node (the min player) will choose the move leading to a position that is

Figure 3.1: A search tree.

6 CHAPTER 3. TREES AND PROOF-NUMBER SEARCH

lost for the max player. If each possible move from this position leads to a won position, the
min player cannot choose a move to a lost position. So to prove that the value of a min node
is a win the value of all its children must be proven to be a win. To prove that the value of
node b is a win, the value of all terminals d,e, and f must thus be proven to be a win. The
value of node ¢ is a win if both the values of terminals ¢ and h are a win. It is clear now that
to prove the value of node a to be a win, each terminal in {d,e,f} or each terminal in {g,h}
must evaluate to a win.

Now let us look at what we can conclude if we want to prove that node a is a loss. To
prove that node a is a loss the value of both children b and ¢ must be a loss. The value of
node b is a loss if at least the value of one of its children is. The same holds for node ¢. So the
value of node a is a loss if at least one terminal in the set {d,e,f} and at least one terminal in
the set {g,h} evaluate to a loss. Note that there are six combinations of terminals matching
this condition, being {d,g}, {d,h}, {e,9}, {e,h}, {f,g} and {f,h}.

What terminal do we have to choose for further examination to get closer to the proof of
the game-theoretical value of the root?

To prove that the value of a is a win, each terminal in {d,e,f} or in {g,h} must evaluate
to a win. Suppose that the chance of evaluating to a win is equal for each terminal. If each
terminal would evaluate to a win then the least effort to prove the value of the root is a win is
done by proving that the value of each terminal in the set with the least number of terminals
is a win. So examining the terminals in the smallest set would lead quickest to the proof that
the value of the root is a win, assuming that all terminals will evaluate to a win. Therefore
examining one terminal in this smallest set (in the figure terminal g or k) would probably
contribute most to a ‘win proof’.

To prove that the value of @ is a loss, each terminal in one of the six sets {d,g} ... {f,h}
must evaluate to a loss. Suppose that each terminal has an equal chance of evaluating to a
loss. The least effort to the ‘loss proof’ of the root is done by proving the loss value of the
terminals in the smallest set of the six sets. Because each set contains two terminals no set
has a preference above an other. Therefore examining any terminal in any of the six sets
would contribute most to the ‘loss proof’.

To prove as fast as possible the root’s real value we are looking for a terminal that satisfies:

1. a quickest way to prove that the value of the root is a win, assuming that the chosen
terminal would evaluate to a win (this is a terminal in a smallest set of terminals that
are needed to prove the win value of the root).

2. a quickest way to prove the value of the root is a loss, assuming that the chosen terminal
would evaluate to a loss (this is a terminal in a smallest set of terminals that are needed
to prove the loss value of the root).

A terminal that satisfies both conditions is a terminal that is in a smallest set of terminals
that proves the root’s value is a win and in a smallest set of terminals that proves the opposite
for the root’s value. In the figure terminals g and h satisfy the first condition and all terminals
satisfy the second condition. So terminal g or & is the terminal that satisfies both conditions
(note that each of the six sets to the loss proof contains either g or h). A terminal that
satisfies both conditions is called a most-proving node.

A most-proving node thus has to be examined to provide more information about the
present search tree. This examination of a node consists of two actions. In the first place we
evaluate the node. If by this the value of the node becomes known as a win or a loss, we

3.2. DEFINITIONS 7

stop further examination; more useful information cannot be obtained for this node. If the
evaluation does not definitely answer whether the node represents a won or lost position, it
has to be expanded: we generate all children of this node and add them to the tree. If the
time complexity of evaluating a node is low compared to expanding the node, it is better to
expand the most proving node, followed by an evaluation of all generated children. If after
evaluating and/or expanding the most-proving node the root’s value is proven, the search is
finished. Otherwise the search has to continue, selecting another terminal in the expanded
search tree among the most-proving nodes.

A few questions still remain open. Does there always exist a node that is in both the
smallest set to prove the root is a winning node, and in the smallest set to prove the opposite?
In other words, does a most-proving node always exists? And, if so, how can this terminal
be determined? The (positive) answer to the first question will be delayed to section 4.2.
Section 3.2 contains some definitions that formally describe how the most-proving node can
be determined and in section 3.3 the algorithms to determine this node are described.

3.2 Definitions

To explain formally how proof-number search works, we need some definitions.

A proof set of a node V is a set of terminals such, that if for each terminal in this set it is
proven that its value is a win then the value of V is a win.

A minimal proof set of a node V' is a proof set S such, that for any terminal t € 5 : (5\ ¢)
(“S without ¢’) is not a proof set for V.

The complete proof set of a node V is the set of all minimal proof sets of V.

A disproof set of a node V is a set of terminals such, that if for each terminal in this set it is
proven that its value is a loss then the value of V' is a loss (to prove that a value is a
loss is the same as to disprove that a value is a win, because only two values, win and
loss are used).

A minimal disproof set of a node V is a disproof set S such, that for any terminal { € 5 :
(S5\ 1) is not a disproof set for V.

The complete disproof sel of a node V is the set of all minimal disproof sets of V.

To compute the complete (dis)proof sets a new set operation, the Tensor Union, denoted as &
is needed:

W : set of sets — set of sets

AvB=) {aub}
a€AbeB

For example A = {{a,b},{c}} and B = {{b,c},{d}}.
Then AW B = {{a,b,c},{a,b,d},{b,c},{c,d}}. By definition if A or B is) then AW B = 0,
too.

Now suppose some node V is a max node. Fach child of V' has a number of minimal proof
sets (the complete proof set). Because V' is a max node to prove that it has a win value, at

8 CHAPTER 3. TREES AND PROOF-NUMBER SEARCH

least one of its children must be proven to have a win value. This means that any minimal
proof set of a child of V' is a minimal proof set of V. So to get all minimal proof sets of V'
the collection of all minimal proof sets of the children of V have to be taken.

To prove that the value of a max node V is a loss, the value of all its children must
be proven to be a loss. So the union of a (one) minimal disproof set of each child of V is
a minimal disproof set of V. To get all minimal disproof sets of V', we have to make all
combinations of minimal disproof sets of the children of V' or, more formally, we have to take
the Tensor-union of the complete disproof sets of its children. If V' is a min node the complete
(dis)proof sets are analogously computed.

If node V is an unproven terminal, the complete (dis)proof set has only one set of terminals
that can prove or disprove a value. This is the set with terminal V itself.

If a terminal V represents a won end position, the value of the terminal is a win. To prove
it has a win value, no more terminals need to be proven to have a win value. So the minimal
proof set of this terminal contains no terminals and is equal to the empty set, (), which is the
only element in the complete proof set.

To prove this terminal V has a loss value, is impossible. So for this terminal there exists no
minimal disproof set. Therefore the complete disproof set has no elements. The computation

if V is an internal node then
if V is a Maxnode then
V.complete-proof-set = Usechudren(v) s.complete-proof-set;
V.complete-disproof-set = tl-JsEcM,drm(V) s.complete-disproof-set;
else
V.complete-proof-set = LﬂsEchi,dren(V) s.complete-proof-set;
V.complete-disproof-set = UsEch“drm(V) s.complete-disproof-set;
fi
else
if V represents a won position then
V.complete-proof-set = {0};
V.complete-disproof-set = (§;
else
if V represents a lost position then
V.complete-proof-set = 0;
V.complete-disproof-set = {0};
else
V.complete-proof-set = {{V'}};
V.complete-disproof-set = {{V'}};
fi
fi

Figure 3.2: The definition of complete (dis)proof sets.

of the complete proof sets is given in figure 3.2.

In the previous section it was described that the terminal that contributes most to the
proof or disproof of the root’s value (most-proving node) is a terminal that is both in a
smallest minimal proof set and a smallest minimal disproof set of the root. Because the

3.2. DEFINITIONS 9

complete (dis)proof set of a node V' contains all minimal (dis)proof sets of V', it also contains
the smallest minimal (dis)proof set (the (dis)proof set with the least number of terminals).
So the smallest minimal proof set in the complete proof set of the root and the smallest
minimal disproof set in the complete disproof set of the root are the only two important sets
to determine the most-proving node. Formally for any node V in a search tree these sets are

defined as:

V .smallest-(dis)proof-set € | J{s*} , where s* € V.complete-(dis)proof-set

. ags
and 57 = *Mmsev.complete—(dis)proof—set|8|

If V is the root of a tree then
most-proving node € (V.smallest-proof-set NV.smallest-disproof-set)

Note that if for a node V' the complete proof set = () that the smallest proof set does not
exist. To compute these two important sets for the root, the complete proof set and complete
disproof set must be computed first. The complete (dis)proof sets are computed with the aid
of the complete (dis)proof sets of the children.

A lot of unnecessarily computation can be avoided if we make use of an obvious (but unproven)
tree property:

Fach minimal proof set of a node V' is disjunct with each minimal proof set of any
sibling of V' (same holds for minimal disproof sets).

So if for each child of some max node V a smallest proof set and disproof set is known, the
smallest proof set and smallest disproof set of V can be computed. The first one is equal to
the smallest of the smallest proof sets of its children and the second is equal to the union of
the smallest disproof sets of each child (for a min node V' the computation goes analogously).

After each expansion of the most-proving node the smallest proof and disproof sets should
be computed again to determine a new most-proving node. This computation is time expen-
sive if the smallest (dis)proof sets for each node is not available in memory. On the other
hand if for each node both sets would be available, the process would be memory expensive.
By only storing the number of elements for both the smallest proof and disproof set of each
node, the most-proving node still can be determined.

The most proving node ¢ of a tree is in both sets of the root of that tree. The smallest
proof set of the root is equal to a smallest proof set of a child (assuming that the root is a
max node). So if ¢ is in the smallest proof set of the root it is also in the smallest proof set of
that particular child. This child is a root of a subtree and for any tree a most-proving node
exists (which will be proven in section 4.2). This most-proving node is, again, in both sets of
the root of that subtree. This time the smallest disproof set is equal to a smallest disproof
set of its children. This means that the most-proving node is also in the smallest disproof set
of that child. Continuing this procedure we finally end up in a terminal, the most-proving
node. If only the number of elements are stored, the same path can be followed from the root
to the terminal. In a max node V the most-proving node is also the most-proving node of a
child that has the same number of elements of the smallest proof set as V. For a min node
the same holds with respect to the number of elements in the smallest disproof set.

These numbers are described as:

The proof number of a node is the minimal number of terminals for which the value must be
shown to be a win to prove that the node has a win value.

10 CHAPTER 3. TREES AND PROOF-NUMBER SEARCH

The disproof number of a node is the minimal number of terminals for which the value must
be shown to be a loss to prove that the node has a loss value.

Or formally described in terms of complete (dis)proof sets:

V.(dis)proof-number = Mmsev.complete—(dis)proof—set |s]

By definition the (dis)proof number of a node is oo if the complete (dis)proof set of that node
is 0.

As for any two disjunct sets A and B, |[AU B| = |A| + |B| and because any minimal
proof set of a node V is disjunct with all minimal proof sets of each of its siblings, the proof
number of a min node is equal to the summation of the proof numbers of all its children.
The same holds for disproof numbers and max nodes. The disproof number of a min node
is equal to the smallest disproof number of its children. The proof number of a max node is
computed analogously. In figure 3.3 the formal description of the (dis)proof numbers is given,
independent of the complete (dis)proof sets.

if V is an internal node then
if V is a Maxnode then
V.proofnumber = Minimum,e ch;1dren(v)(s-proofnumber);
V.disproofnumber = EsEch“dren(V) s.disproofnumber;
else
V.proofnumber = EsEchi,drm(V) s.proofnumber;
V.disproofnumber = Minimumsemﬂd,m(v)(s.disproofnumber);
fi
else
if V represents a won position then
V.proofnumber = 0;
V.disproofnumber = oc;
else
if V represents a lost position then
V.proofnumber = oo;
V.disproofnumber = 0;
else
V.proofnumber = 1;
V.disproofnumber = 1;
fi
fi

Figure 3.3: The determination of (dis)proof numbers.

Figure 3.4 shows the tree of figure 3.1 with proof- and disproof numbers added, denoted
as (proof number, disproof number) at each node. The bold edges represent the path to a
most-proving node starting at the root.

The definitions of (dis)proof numbers in this section leads to simple and clear algorithms,
wich will be described in the next section.

3.3. ALGORITHMS 11

11y 1€y @@y (1,2) (1,2)

Figure 3.4: A search tree with (dis)proof numbers.

3.3 Algorithms

In this section the pseudo code of the algorithms that will prove the game-theoretical value,
e.g. a ‘win’ or a ‘loss’, of a given position are described. In the algorithms an abbreviation for
proof number, disproof number and most proving node will be used. They will be denoted
by pn, dpn and mpn, respectively.

First of all we have to determine the most-proving node in a search tree. In the previous
section it was described that a most-proving node of a tree can be determined by constructing
a path from a max node to a child with equal proof number to that of the max node and
from a min node to a child with equal disproof number. Continuing this proces until a
terminal is reached yields a most-proving node. Sometimes there may be more children with
an equal proof or disproof number to that of their parent (if this is the case, the intersection
of the smallest proof set with the smallest disproof set of this parent contains more than
one terminal, or more than one smallest (dis)proof set exists for the parent). There is no
theoretical preference for any one of these terminals. In the algorithm described in this
section, the left-most terminal in the current search tree that is @ most-proving node is
chosen as the most-proving node. The algorithm described in figure 3.5, illustrates how to
construct the correct path starting from a root of a (sub)tree to the most-proving node of
that (sub)tree.

If we have determined the most-proving node, this node should be examined closer. In
section 3.1 it is described that this can be done in two ways. The first method is to evaluate
the terminal and, if it does not evaluate to a win or loss, to expand the node. The other
method expands the terminal, knowing that it is not evaluated to a win or loss, followed by
evaluating all the generated children. The algorithm described in figure 3.6 shows the pseudo
code for the second method.

After the expansion of the most-proving node the search tree has changed, so the (dis)proof
numbers of the nodes have to be recomputed. The only nodes that can get other (dis)proof
numbers than they had before the expansion, are the nodes on the ‘expansion path’, the path
from the root to the most-proving node. So these nodes are also the only nodes for which the
(dis)proof numbers have to be recomputed. In figure 3.7 a recursive procedure that handles
this recomputation is described.

Now that the tree has its updated values, we need a new most-proving node, which we
have to expand, etcetera. The main pn-search procedure is described in figure 3.8.

12

CHAPTER 3. TREES AND PROOF-NUMBER SEARCH

function determine-most-proving-node (V' : node);
begin
while V is an internal-node do
if Maxnode then
V := leftmost-child-with-equal-proofnumber (V');
else
V := leftmost-child-with-equal-disproofnumber (V');
fi
od
return V;
end

Figure 3.5: Determining most-proving node.

procedure expand (V : node);
begin
Children(V') := Generate-Children(V);
for each s € Children(V) do
Create-Node (s);
Make-Edge (V, s);
value := Evalution(s);
if value is a ‘win’ then
s.pn = 0;
s.dpn = oo;

else
if value is a ‘not win’ then
s.pn = oo;
s.dpn = 0;
else
s.pn = 1;
s.dpn = 1;
fi
fi
od
end

Figure 3.6: Expanding a node.

3.3. ALGORITHMS

procedure update (V : node);
begin
if V is a Maxnode then
V.opn := Minimum;ecpitdgren(v)(s-pn);
Vidpn = 3 ¢ Chitaren(v)(5-dpn);
else
Vipn = ZsEChildren(V)(S'pn);
V.dpn := Minimumechitdren(v)(s.dpn);

fi
if V' has a parent then
update(parent(V));
fi
end

Figure 3.7: Updating the (dis)proof numbers.

function pn-search (position);
begin
root := Create-Root (position);

while (root.pn # 0) and (root.dpn # 0) do

mpn = determine-most-proving-node (root);

expand (mpn);
update (mpn);
od
if root.pn = 0 then
return ‘win’
else
return ‘not win’

fi

end

Figure 3.8: pn-search.

13

14 CHAPTER 3. TREES AND PROOF-NUMBER SEARCH

3.4 Enhancements, (dis)advantages and speed-up

This last section of this chapter is partitioned in five paragraphs. The first paragraph mentions
some areas in which pn-search has been applied. The second one explains some advantages
and disadvantages of this search method and thereafter the memory problem as well as some
techniques to deal with it are described. Enhancements on pn-search are given in the fourth
paragraph. This section will end with a nice property that can be used to speed up the
execution time.

Applications Pn-search has been developed to determine the game-theoretical value of
initial positions (solving games) and other game positions (post-mortem analysis). It has also
its applications in tournament programs.

Starting with initial game positions, pn-search was succesful for the games Connect Four
(Uiterwijk et al., 1990) and Qubic (Allis and Schoo, 1992). To solve these games, powerful
evaluation functions were used. Go-Moku has been solved with the aid of threat-space search
as a very strong evaluation function for pn-search (Allis and Van den Herik, 1992).

In determining the game-theoretical value of other game positions, pn-search outperforms
the well known -0 variants on sufficiently non-uniform trees which has been shown for the
game of Awari (Allis et al., 1991; Allis et al., 1994)).

For tournament play, a multivalued version of pn-search can be used. Suppose a game has
an evaluation function that produces values in the range 0...31. First we prove whether the
value is smaller than 16 or not. Now this is a two-valued process (with values smaller-than-16
resp. greater-than-or-equal-to-16), so pn-search can be used. If the answer is greater-than-or-
equal-to-16 then we use pn-search again to prove whether the value is smaller than 24 or not.
If the answer is smaller-than-16 pn-search is used to prove the value is smaller than 8 or not.
Continuing this binary proces, the real value will be proven in at most five steps.

Advantages and disadvantages The question whether pn-search outperforms a-f algo-
rithms in solving positions, depends on the complete form of the game tree. If it is a uniform
tree, like Tic-tac-toe starting with the empty board, pn-search does worse than a-3 search.
In the worst case it even simulates Minimaz (in fact the first five levels of the Tic-tac-toe tree
built by pn-search are equal to the tree generated by Minimax!). But if the tree is not uniform
and especially if there are forced moves to be played, pn-search shows its strength. A nice
example of this has been found in an implemenation of Give-away-chess'(Allis, 1994). After
white has played 1.d2-d4, 1.d2-d3 or 1.e2-e4 in the initial position, pn-search showed that
the position was a loss for white in less than 10 seconds. So a winning variant for black with
at least 32 plies had been found.

Memory problem Because pn-search is a best-first-search technique the complete game
tree that has been built must be kept in main memory. This sometimes may cause memory-
exceed problems. To reduce the size of the tree, several techniques are known. A subtree can
be deleted if the root of this subtree has been proven (e.g. proof or disproof number of this
node is equal to zero). This reduction helps, but does not always solve the problem.

!n this chess variant a player must capture an opponent’s piece if possible and has a free choice otherwise.
The first player that cannot make a move wins the game.

3.4. ENHANCEMENTS, (DIS)ADVANTAGES AND SPEED-UP 15

If the main memory is ‘full of nodes’ but the search is not finished yet, some parts of the
present search tree must be deleted to free some memory and continue the search. In (Allis
et al., 1991; Allis et al., 1994) a technique called delete-least-proving-nodes is described. It is
unlikely that such a least proving node will be needed soon in the further search. By deleting
a couple of these nodes, some memory becomes available and the search can continue.

Some experiments with deleting complete subtrees are done by Gnodde for the Othello

game (Gnodde, 1993).

Enhancements Gnodde also described the improvements that are made by initializing the
(dis)proof number in the nodes generated after an expansion other than the standard proof
number = disproof number = 1. This different initialization is based on a heuristic guess of the
number of nodes that probably will be needed to (dis)prove the value of the node generated.
These heuristic proof and disproof numbers are based on specific game characteristics. For
example, if a position seems to be almost won then its proof number (the number of terminals
to prove that it is a win or, informally, the amount of work that has to be done) is initialized
with a lower number than in positions where the win seems further away. In section 3.2 pn-
search was described assuming that the chance for each terminal to be a win or loss is equal
for each terminal. With these heuristic initializations, terminals are attributed a bigger or
smaller chance to be a win or a loss. In his thesis, Gnodde compares pn-search using heuristic
initialization and pn-search with the standard initialization. He shows that the number of
nodes needed to solve some Othello positions is about a factor 20 less in favour of the heuristic
technique.

Another form of initializing the proof or disproof number, is using a value that it would
have had if the node had been expanded. So if the node is a max node, the disproof number
is equal to the number of moves the max player can make and the proof number is still equal
to 1. If the node is a min node the proof number will be initialized with the number of moves
the min player can make and the disproof number is set to 1. Using this (non-heuristic)
initialization the (dis)proof number of each terminal is determined one ply ahead, so the
information that is now available in the tree is much more than the information there would
be if the (dis)proof numbers of the terminals were initialized with (1,1). This technique is
used in finding check-mate variants of given chess positions (Breuker et al., 1994).

Speed-up The execution time of the update procedure described in section 3.3 can be sped
up by using a property of pn-search and trees. This property yields that (dis)proof numbers
of a node are based on the (dis)proof numbers of their children. Knowing this the update
procedure will be more efficient if updating the (dis)proof numbers of the nodes on the
expansion path is quitted as soon as both proof and disproof number of a node have not
been changed. Because the values of the siblings of this node have not changed either, the
values of the parent remain the same as well, as will the values of all other predecessors.

This property however is a specific {ree property of proof-number search. When pn-search
is applied to trees with transposilions, which are no longer trees, but graphs, this property
does not hold. The next chapters will discuss this problem.

16

CHAPTER 3. TREES AND PROOF-NUMBER SEARCH

Chapter 4

DAGs and proof-number search

Transpositions are used to prevent doing the same work twice in a search tree. In a-f search
transpositions are implemented by making use of hash tables, also called transposition tables.
If for a position its value has been computed, this position is stored in the hash table, along
with some additional information, like the depth of the position in the tree and whether the
value has been determined with a-8 cutoffs. When at another place in the a-8 tree this
position is encountered again, the value in the hash table can be used instead of recalculating
the value.

If transpositions are used in best-first-search techniques, in which the total search tree is
available in memory, the structure is no longer a tree, but a graph. There are two types of
these search graphs created by two types of transpositions.

The first type, known as Directed Acyclic Graph (DAG), is created by games that have
strictly converting positions. This means that from some position after each move it is impos-
sible to reach that position again by any legal sequence of moves. Tic-tac-toe, Connect Four,
Go-Moku and Qubic are games having this property.

The second type of game graphs are the Directed Cyclic Graphs (DCGs). Games that
create DCGs are games that can have repetition of positions, like Chess and Nine Men’s
Morris. The DCGs will be discussed in chapter 5.

This chapter is partitioned in six sections. First the problem of DAGs in combination with
proof-number search will be explained. Thereafter will be proven that the most-proving node
as defined in section 3.2 exists in DAGs. The third and fourth sections contain algorithms
that determine a most-proving node, distinguished into a theoretically correct algorithm (sec-
tion 4.3) and a practically usable algorithm (section 4.4). In the fifth section results of these
algorithms are compared with a tree algorithm that do not make use of transpositions. Finally,
some additional problems and enhancements specifically for DAGs are discussed.

4.1 The problem

A transposition is a position that can be reached from another position via different paths.
For example, position 7T in figure 4.1 can be reached from the initial Tic-tac-toe position A
via paths A— B—C —T and A— F — F —T. If no notice is given to this, two equal subtrees
could be generated in a tree with both position 7" as the root of the subtrees. If the nodes
are linked together a lot of effort will be avoided.

When the proof and disproof numbers of pn-search are applied to graphs with transposi-

17

18 CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

A A
PN PN
(o] o]
B E B E
(6] (o]
1 1 \ \
(o] o]
C[Ix x| F Cl[X x| F
(o] (o]
¥ V ~N
(o] (o] o
T X x| T T [[X
(6] (6] (o]

Figure 4.1: Example of a transposition.

tions some problems arise. Suppose node c is the last expanded node in the graph in figure 4.2.

(22

@y @@y (1,1 (1,2)

Figure 4.2: Double counted transpositions.

It generated two children f and g, of which f was generated earlier in the search as a child
of node b. So node f is reachable via two paths, a — b — f and @ — ¢ — f, and therefore is a
transposition node. After the expansion of node ¢ the graph has to be updated. Doing this
with the standard tree algorithms described in section 3.3 give the (dis)proof numbers next
to the nodes in figure 4.2. Let’s have a closer look at these numbers. The (3,1) at node b is
without problem. These numbers were already computed in an earlier iteration before node
¢ was expanded. The (dis)proof numbers at node ¢ are also without problem. To prove the
value of node ¢ is a win, at least two terminals, f and g, must be proven to have a win value,
and only one, f or g, needs to evaluate to a loss to prove the value of ¢ is a loss. But the
numbers at the root are not so obvious. At the first look they seem to fit: the proof number
of @ is the minimum of the proof numbers of b and ¢ and the disproof number is equal to the
summation of the disproof numbers of its children. The proof number is indeed correct, but
what about its disproof number.

Suppose transposition node f evaluates to a loss. Then the value of both b and ¢ will be a
loss because they are both min nodes and the player to move in the positions represented by
min nodes always chooses a variant that will lead to a lost position, if available. But if both
values of b and ¢ are losses then, because all children of ¢ now have a loss value, the value

4.1. THE PROBLEM 19

11y @1y @y 11y 11y @11y @@y

Figure 4.3: Ignoring transpositions.

of node a is a loss. So only the value of one terminal (node f) needs to evaluate to a loss
to prove that the value of node «a is a loss, instead of the ‘at least two’ that the computed
disproof number indicated.

To explain this, let’s look at the smallest disproof sets of nodes b and ¢, {d,e, f} and
{f.g}, respectively. The smallest disproof set of node a is determined by all possible combi-
nations between the disproof set of its children, here {d, f}, {d, g}, {e, [}, {e,9}, {f, g} and
{f,f} = {f}. All combinations, except the last one have two elements. It looks like the last
one has also two elements, but because both items are equal it is reduced to one (which is
usual for sets) and this was something that was not known when the disproof number of
was computed. So the numbers in node « have to be (2,1) instead of (2,2).

Because node f was counted twice the disproof number of ¢ was wrong, but summing
(dis)proof numbers is not the only problem when the tree algorithms are applied to DAGs.
In figure 4.3 node e is a transposition node. The (dis)proof numbers are computed as if it
were a tree with node e (including its subtree) as a child of nodes b and ¢. In this example
the disproof number of node e is not counted twice, but it is simply ignored. The disproof
number at the root stands for the terminals {g, h,{,m}. But if terminals ¢, j and k evaluate
to a loss then the value of e is a loss, so will the values of b and ¢ and therefore the value of
node a is also a loss. So the least number of nodes needed to prove node a will be a loss is
three instead of four, so node a should have (dis)proof numbers (2,3). This example shows
that when (dis)proof numbers are computed by simply minimizing at (min) max nodes a lot
of information can disappear.

Computing the correct (dis)proof number at each node in a DAG is one problem. Another
problem even appears when the (dis)proof numbers are correct. Suppose node «a in figure 4.3
has the correct values (2,3) instead of (2,4). To determine the most-proving node, a path
could be followed, according to the algorithm in section 3.3, from a max node to the left-most
child with a proof number equal to its parent and from a min node to the one with equal
disproof number. In figure 4.3 this path leads from node a via nodes b and d to terminal g.
But earlier it was shown that the smallest disproof set is {1, j, k} and the most-proving node
must be in the intersection of the smallest proof set with the smallest disproof set of the root.
Because g ¢ {i,j,k} it is also not in the intersection of the two smallest sets.

20 CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

The definitions given in section 3.2 are still correct for DAGs, but the examples in this
section showed that the algorithms as described in section 3.3 to determine the most-proving
node in a DAG are incorrect. Section 4.3 describes algorithms that correctly determines the
most-proving node in a DAG. But first it will be proven that this most-proving node really
does exist in a DAG.

4.2 Most-proving node exists

The examples in the previous section showed that the computation of the smallest (dis)proof
sets is not as easy for DAGs as it is for trees. To compute the smallest (dis)proof sets in
trees we used the tree property that all smallest (dis)proof sets of any two sibling nodes are
disjunct. So only one of all possible smallest (dis)proof sets for each child was needed to
compute the smallest (dis)proof sets of the parent, because the union of two disjunct smallest
(dis)proof sets always will contain the same number of terminals as the union of any other
two smallest (dis)proof sets. Because it is possible that in DAGs the minimal (dis)proof sets
of some nodes are no longer disjunct with some minimal (dis)proof sets of their siblings (for
example node b and its sibling ¢ in figure 4.2 both have {f} as a minimal disproof set) this
property does not hold anymore.

The definitions in section 3.2 showed that there are two methods to compute the smallest
(dis)proof sets for each node. The first method computed the complete (dis)proof set for a
node and determined the smallest (dis)proof set by comparing all minimal (dis)proof sets in
it. The second one computed the smallest (dis)proof set of a node by looking only at the
smallest (dis)proof sets of the children of that node. The last method is only correct for trees.
But the first is still correct for DAGs, because all minimal (dis)proof sets are computed for
each node without making use of the tree property that two (dis)proof sets are disjunct for
two siblings.

The most-proving node is a terminal that is both in the smallest disproof set and smallest
proof set. Theorem 1 says that there always exists such a terminal in an unproven DAG (note
that by the term unproven DAG is meant a DAG of which the game-theoretical value of the
root is not established as yet).

Theorem 1 Any unproven search DAG has a most-proving node.

To prove theorem 1 we have to prove that the intersection of the smallest proof set with the
smallest disproof set is not empty. This will be done by proving that the intersection of any
minimal proof set in the complete proof set with any minimal disproof set in the complete
disproof set for each unproven node V in the unproven search DAG is not empty.

4.3. THEORETICAL ALGORITHM 21

The proof proceeds by induction:
Proof :
base

The unproven DAG contains only one node V. Node V is a terminal. By definition,
the complete (dis)proof set contains only one set, {V'}. So the intersection of ‘any’
minimal proof set with ‘any’ minimal disproof set of V is:

{Vin{Vv}#0.
induction hypothesis

Assume that
The intersection of minimal proof set with minimal disproof set for each unproven
node in the unproven DAGs dy ...d, (n > 1) is not empty.

induction step

Let V' be a node such that V is not in d; (1 < ¢ < n) and that each d; contains
at least one unproven child of V. Suppose V is a max node. To compute the
complete disproof set of V' the Tensor union has to be taken of all the children’s
complete disproof sets. Due to the Tensor union two important relations between
parent V and each child, say s;, exists:

Tensor properties:

e For each ds € s;.complete-disproof-set a vds € V.complete-disproof-set exists,
such that ds C wvds.

e For each vds € V.complete-disproof-set a ds € s;.complete-disproof-set exists,
such that ds C vds.

The intersection of any ps € s;.complete-proof-set with any ds € s;.complete-
disproof-set is not empty (due to the induction hypothesis).

So the intersection of any ps € s;.complete-proof-set with any vds € V.complete-
disproof-set is not empty (due to the Tensor properties).

This is true for each child s; of V and because V.complete-proof-set is the union
of the complete proof sets of all children of V. the intersection of any wps €
V.complete-proof-set with any vds € V.complete-disproof-set is not empty.

(For a min node, the proof goes analogously)

a

So the most-proving node exists in any search DAG (since each tree is a special DAG this
also means that a most-proving node exists in any search tree). The next section shows some
problems as well as some algorithms to determine this most-proving node.

4.3 Theoretical algorithm

Only (dis)proof numbers are used to determine the most-proving nodes in trees. Because
for any two siblings in a tree the smallest (dis)proof sets are mutually disjunct, the number
of elements in these sets (the (dis)proof numbers) gives enough information to determine

22 CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

Figure 4.4: A DAG with some disproof values.

the most-proving node. Sections 4.1 and 4.2 showed that this property does not hold for
DAGs. The proof of theorem 1 showed that all combinations of terminals have to be stored
to determine the (dis)proof number and find the most-proving node. This may require too
much memory, so some less memory-intensive algorithm is needed.

In figure 4.4 we only determine the disproof numbers (the proof numbers are determined
analogously). Nodes d, e and f have straightforward disproof numbers. The disproof number
of node ¢ is simply equal to the minimum disproof number of its children (here the disproof
number of f), but because node e is a transposition node the value of e can exert its influence
through more than one path to the root. All these ‘transposition effective paths’ will meet
each other in a so-called join node. At this node the influence of the transposition comes
evident (in figure 4.4 node a is a join node: from transposition e two paths e-b-a and e-
c-a join in node a). So besides the minimal disproof number of node f some additional
information about transposition node e has to be stored in ¢. Note that the value of node ¢
is a loss if and only if the value of node e or node f is a loss, so the disproof value of node ¢
is <2 V value-of(e)>. Node b derives analogously <3 V value-of(e)>. Node a is proven
to be a loss if the values of node b and node ¢ both are losses. So the disproof value of node
ais :

<3 V value-of(e)> A <2 V value-of(e)>
This is equal to the 2 * 2 combinations :
<243 V 2+value-of(e) V 3+value-of(e) V value-of(e) + value-of(e)>.

The first three combinations of the disproof value are summations of disjunct terminals but
the last one is not. Value-of(e) 4 value-of(e) implies a double count of the disproof number
of node e. This can now be prevented by removing all double ‘value-of(x)’s in a term of the
disproof information. So the last term has to be replaced by 0 4+ value-of(e). Now the last
three terms can be simplified to one term without loosing transposition information because
(0+2z) < (24) < (34) and we are only interested in the smallest value. The disproof
value of node a thus is :

<5 Or value-of(e)>.

4.3. THEORETICAL ALGORITHM 23

(71 v [f1] v [g6]v [df]

Figure 4.5: A DAG with two transpositions on one path.

The disproof number is equal to the smallest value of the disproof value. Since value-of(e) is
4 (stored in node e) the disproof number of a is equal to minimum(4,5) = 4.

Generally, to determine the (dis)proof values of a node all combinations have to be stored
in which transpositions can have their effect. This is done by computing a disjunctive normal
form (dnf) for both the proof and the disproof of a node. This (dis)proof-dnf has the form :

(dis)proof-dnf = clause; V clause; V ...V clause,.

in which each clause has two parts: a (possibly empty) transposition set and an integer
representing a number of terminals. [a A b A ¢ 13] abbreviated to [abc 13] means that the
value of this clause is equal to the summed values of transposition nodes a,b and ¢ plus 13
terminals. In figure 4.4 the disproof-dnf of node a is ([@ 5] V [e 0]) or short ([5] V [e]).

To compute the proof-dnf of a max node all the proof-dnfs of its non-transposition children
have to be ‘or’ed and the result simplified (by removing unnecessary clauses). If a child s is
a transposition, not the child’s dnf but only the clause [s] is ‘or’ed.

The disproof-dnf of a max node is equal to the ‘and’ of the disproof-dnfs of his children’s
(with the same exception if a child s is a transposition).

By definition the first clause of each (dis)proof-dnf has an empty transposition set and the
integer represents the correct (dis)proof number. In figure 4.4 the disproof number of node «
is equal to 4. This means that the disproof-dnf of node a becomes: ([4]V [5]V [e]) = ([4]V [€]).

To determine the correct (dis)proof number of node a in the first example we simply
filled in the disproof number of node e. Figure 4.5 showed that it is not always that easy.
Nodes g, h and ¢ are terminals and each have disproof-dnf [1] (again only the disproof will
be determined). Because g is a transposition the disproof-dnf of node e is ([1] V [g]). The
disproof-dnf of node fis ([3] V [¢g 2]). Because f is also a transposition the disproof-dnf of
nodes ¢ and d is ([3] V [f]). The disproof-dnf of b is equal to the disproof-dnf of its only child
e. The disproof-dnf of node a is the ‘and’ of the disproof-dnfs of all its children :

([1v g A (BIV D A BIV IS =
([FIVIFAIVIfAIVIffVIg6lVIgf3]VigSf 3]V Ieff)=
([FIVIf4VIf1vIg6]lVIgf3]VIgf]) =

([7Iv[f 1]V g 6]V Igf])

24 CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

This is not the correct disproof-dnf yet, because the disproof number must be calculated and
stored in the first clause. The correct disproof number is the minimum value of the values
represented by each clause, so for each clause its disproof number must be calculated. The
computation of the last clause is the most interesting. After substitution of f we get:

lgf1=1Tgn([B]VIg2])]=1lg3]Vlgg 2] =g 2]

and after substitution of g the value of clause [¢f] becomes 1 + 2 = 3.
Note that the order of substitution is important. If ¢ had substituted earlier than f then
the value of this clause would be :

lgfl=MUA =1 1U=1B]VvIg2D A1l =[4]V]g 3] = [4] v [[1]A 3] = [4]

which is incorrect. Generally, if {; and {5 are two transpositions in a clause and the disproof-
dnf of t; depends on the disproof-dnf of ¢; (#1 is an ancestor of #3), then ¢; must be substituted
before 14 is substituded. The substitution order can be determined with the aid of dependency
numbers (dep-nr). Define for each node V' :

Maxcechﬂdren(v)(C.dep—nr) + 1 ,if V is internal and transposition node
V.dep-nr = Maxcechﬂdren(v)(c.dep—nr) ,if V is internal and not transposition node
0 , otherwise

If a disproof-dnf of a transposition node t; depends on the disproof-dnf of {5 then the de-
pendency number of ¢; is greater than the dependency number of {3. The disproof number
of a clause can now be computed by substituting first the transposition with the highest
dependency number. The computation of the real proof number of a proof-dnf is described
in figures 4.6. The computation of the real disproof number of a disproof-dnf is done analo-
gously. In the description, the transposition set of a clause ¢ is denoted as ‘c.transpositionset’
and the integer that represents the number of (extra) terminals in a clause ¢ is denoted as
‘c.teminalnumber’.

In a max node, the proof DNF is determined by ‘or’-ing the children’s proof-dnfs. There-
fore, the real proof number of a max node is equal to the minimum of the real proof numbers
of its children. The same holds for a min node with respect to the disproof number. Fig-
ure 4.7 describes the algorithm that updates the dnfs in a DAG after the expansion of a
node. In Normalized-dnf, the computed temp-(dis)proof DNF is reset to a dnf, without equal
clauses and the real (dis)proof number in the first clause. This update procedure must be
executed for all parents V' of the generated children. The initialization of the (dis)proof-dnfs
is described in the expand algorithm in figure 4.8.

With the aid of only the correct (dis)proof numbers stored in every node, the most-proving
node cannot be determined. In figure 4.4 the disproof number of node « has been determined
by the influence of transposition node e. So for node a the most-proving node could be in
the successors of node e. But ¢ is a max node and in a max node the most-proving node is
(as for trees) one of the successors of the child with equal proof number. So the first step of
the path to the most-proving node (the most-proving path) is moving to node b. From node
b the next step is normally moving to the child with equal disproof number, but this time
the disproof number of an ancestor on the most-proving path has been determined by using a
transposition node. So the most-proving path has to lead to that direction if possible. This
means that the next step of the most-proving path is moving to node e. Finally the leftmost
child of e is the most-proving node.

4.3. THEORETICAL ALGORITHM 25

function ComputeProofMinimum (dnf : DNF-TYPE,
out used-transposet : SET-TYPE);

begin
w = 00;
used-transposet := (;

for each clause ¢ of dnf do
if c.transpositionset # () then
t := TranspositionWithHighestDependencyNumber (c.transpositionset);
new-dnf := Substitute (¢.proof DNF for ¢ in ¢);

v := ComputeProofMinimum (new-dnf, temp-set);
if v < w then
w = v
used-transposet := temp-set U {t};
fi
else
w := minimum (c.terminalnumber, w);
fi
od
return w

end

Figure 4.6: Computation of the minimum proof number.

Generally, the next step of a most-proving path from a max node V' is moving to the child
that leads to a transposition that has been used to compute the proof number of a min node
earlier on the most-proving path. From a min node the next step moves analogously with
respect to the disproof number. So when selecting the next step of the most-proving path,
two things have to be known for each node:

1. what transpositions are used to compute the (dis)proof numbers of this node ?
2. is this node on a path to a transposition ?

The first question is answered during the computation of the minimum (dis)proof value of a
(dis)proof-dnf (see algorithm in figure 4.6), the ‘used transpositions’ are stored in the used-
transposet of the node.

To answer the second question, suppose it is known that the proof number of an ancestor
V' of a max node V on the most-proving path has been determined with the use of some
transpositions ¢ ...%, (the used-transposet of node V’). Note that the proof-dnf has been
computed with the aid of the proof-dnfs of the children. So if a transposition ¢; is in a proof-
dnf, it must be in the proof-dnf of one of its children, or a child must be ¢; itself. This means
that if a ¢; is in the proof-dnf of a child of V or ¢; is a child of V' then that child is on a
path leading to a transposition that has been used by determining the proof number of V'. If
no child on a path leads to a transposition ¢; in the used-transposet of V' then the left-most
child with equal proof number will be the next step on the most-proving path. The selecting
algorithm is described in figure 4.9.

Although these algorithms correctly determine the most-proving node they are not prac-
tical. The memory complexity of the (dis)proof dnfs and the time complexity of the Com-

26

CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

procedure updateDNF (V : node);
begin
if V is a Maxnode then
temp-proof DNF :=
stchildren(V) and —dransposition(s)(s'prOOfDNF) v
s€children(V) and transposition(s)([s 0])’
temp-disproof DNF :=
/\sEchildren(V) and ﬂtransposition(s)(s'disprOOfDNF) A
s€children(V) and transposition(s)([s 0])’
proofnumber := Minimumsechizdren(v)terminal—nr—of—ﬁrst—clause(5.proofDNF);

disproofnumber := ComputeDisproofMinimum (temp-disproof DNF,used-transpos);
else

temp-proof DNF :=
/\sEchildren(V) and ﬂtransposition(s)(s'prOOfDNF) A
s€children(V) and transposition(s)([s 0])’
temp-disproof DNF :=
\/sEchildren(V) and ﬂtransposition(s)(S'diSprOOfDNF) v
s€children(V) and transposition(s)([s 0])’
proofnumber := ComputeProofMinimum (temp-proof DNF used-transpos);
disproofnumber := Minimumsech“d,m(v)terminal—nr—of—ﬁrst—clause(s.disproofDNF);
fi
V.proof DNTF := Normalized-dnf (temp-proof DNF, proofnumber);
V.disproof DNF := Normalized-dnf (temp-disproof DNF, disproofnumber);
V .used-transposet = used-transpos;
for each f € parents(V) do
updateDNF (f);
od
end

Figure 4.7: Updating the (dis)proofDNFs.

4.3. THEORETICAL ALGORITHM

procedure DagExpand (V' : node);
begin
Children(V') := GenerateChildren (V);
for each s € Children(V) do
if s already in DAG then
Make-Edge (V, s);
else
Create-Node (s);
Make-Edge (V, s);
value := Evaluation (s);
if value is a ‘win’ then
s.proof DNF := [() 0];
s.disproof DNF := [() oo];
else
if value is a ‘not win’ then
s.proof DNF := [() oo];
s.disproof DNF := [0];

else

s.proof DNF := [(1];
s.disproof DNF := [1];
fi
fi
s.used-transposet := {J;
fi
od

end

Figure 4.8: Expanding a DAG node.

27

28

CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

function DetermineMpnInDags (V' : node);
begin
proofset := {;
disproofset := ;
while V is an internal node do
if V is a Maxnode then
if (disproofset =) then
disproofset = V .used-transposet;
fi
if ChildOnPathToUsed TranpositionExists (V, proofset) then
V := LeftMostChildToUsed Tranposition (V, proofset);

else
proofset := {;
V := LeftMostChildWithEqualProofnumber (V');
fi
else

if (proofset =) then
proofset = V .used-transposet;
fi
if ChildOnPathToUsed TranpositionExists (V, disproofset) then
V := LeftMostChildToUsed Tranposition (V, disproofset);
else
disproofset := (;
V := LeftMostChildWithEqualDisproofnumber(V);
fi
fi
od
return V;
end

Figure 4.9: Determining the most-proving node in a DAG.

4.4. PRACTICAL ALGORITHM 29

pute(Dis) ProofMinimum procedures are too large. The next section describes some practically
usable algorithms that do not have these complexity problems but also do not always find
the theoretical correct most-proving node.

4.4 Practical algorithm

The (dis)proof number, by definition the number of terminals in the smallest (dis)proof set,
have a nice property for trees: for a node V' the (dis)proof numbers are directly obtained by
summing or minimizing the (dis)proof numbers of V’s children. This property leads to an
efficient algorithm, pn-search.

The previous sections showed that this property does not hold for DAGs. This means
that the algorithm cannot be used for computing the correct (dis)proof numbers and finding
the most-proving node in DAGs. In section 4.3 an algorithm is described that correctly
determines the most-proving node, but this algorithm has an unfavourable time and memory
complexity. Hence an eflicient algorithm is needed that can still handle the transpositions.

Although the tree algorithm is theoretically incorrect for DAGs, it still can be applied to
DAGs. The so computed (incorrect) proof and disproof numbers do not represent the number
of terminals in the smallest (dis)proof set, but they contain a number that is an upper bound
to the real (dis)proof number. Suppose all nodes in a tree are labeled. Equal labels stand for
equal positions in the nodes. The difference between a DAG application and a tree application
of the algorithm is that after finding the most-proving node the tree application only expands
one node and updates the path to the root. The DAG application expands all nodes with
a label equal to the label of the most-proving node. To prevent building big trees all nodes
with equal labels are joined into one node thus creating a DAG.

In trees the most-proving node has the property that if it would evaluate to a loss, the
disproof number in the root would decrease with one and the same holds for the proof number
if the most-proving node would evaluate to a win. If the tree algorithms are used for DAGs
this property still holds. In some cases the (dis)proof number would decrease even more.
This happens when the (dis)proof numbers of transposition nodes are counted more than
once. Figure 4.2 gives an example in which the disproof number would decrease by two if the
most-proving node, f, would evaluate to a loss .

So with some small extensions all algorithms in section 3.3 can be used to perform proof-
number search in DAGs. The first extension is in the update procedure. Instead of recursively
updating only one parent (last line in the procedure) all parents have to be recursively up-
dated. The other extension is in the expand procedure. For each generated child it must be
checked whether the position it represents has been generated earlier in the tree. If so, this
child is a transposition and instead of creating a new node, only the edge between node V
and the already existing transposition node is made. This DAG algorithm has successfully
been applied for the games Connect Four, Qubic and Go-Moku by Uiterwijk et al. (1990),
Allis and Schoo (1992) and Allis and Van den Herik (1992), respectively.

4.5 Results

In this section results of the three algorithms that are described in the previous sections and
chapters will be compared. Because one of the three algorithms (the theoretically correct
algorithm for DAGs) is slow and uses much memory to execute, a small domain, Tic-tac-toe,

30 CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

has been selected as test domain. Tic-tac-toe is a game in which no repetitions can occur, so
if transpositions occur during the search, the search graph will be a DAG.

Despite the small domain, the theoretical DAG algorithm could not solve the initial Tic-
tac-toe position in reasonable time. After more than forty hours of executing the program
was terminated abnormally, without determining the value of the root. The algorithm could
solve positions with seven empty squares instead of nine, but these results do not give a fair
comparison with the other two algorithms, because the number of transposition nodes created
during the determination of the value of the root is rather small. Therefore this section does
not contain results of the theoretical DAG algorithm, but only those of the tree algorithm
and the practical DAG algorithm.

It is well known that the game-theoretical value of the initial position of Tic-tac-toe (the
empty board) is a draw. Because pn-search is a two-valued search technique, two phases are
needed to prove this by pn-search. In the first phase the drawn end positions (positions which
have no empty fields and neither cross nor noughts has three in a row) will be interpreted as
lost. With this interpretation the value of the root will be proven to be lost, meaning that
the player to move in the root cannot win. In the second phase the draw positions will be
interpreted as won positions and with this interpretation the value of the root will be proven
to be a win, meaning similarly that the player to move in the root cannot lose. Using the
proven values of both interpretations it can be concluded that the player to move in the root
can neither win nor loose, so the game-theoretical value is a draw. In this section the results
of only the first phase will be described, thus drawn positions are interpreted as lost positions
and the game-theoretical value is a loss.

It is possible that in a tree or a DAG more than one most-proving node exists. Because
the algorithms choose the left-most child with equal proof (or disproof) number of a max node
(or min node, respectively) on a path to a most-proving node, the order in which the children
are generated for each node is important in proving a value. To obtain a fair comparison
of the three algorithms, a number of different move orders is chosen. If a node is expanded
during a search the generated children are randomly ordered and added to the tree or DAG.

Table 4.1 contains a selection of the experimental results of the two algorithms applied to
Tic-tac-toe. For a number of different random orders of generating the children the number
of nodes that are visited by each algorithm is given. The first column contains the start
seed of the random generator. The second column, labeled with tree algorithm, contains the
number of nodes visited by the standard pn-search algorithm, that is without making use
of transpositions. The last column, practical DAG algorithm, contains the number of nodes
visited by the practical DAG algorithm (section 4.4). The last row contains the average
number of nodes visited by each algorithm. The average is taken over 100 experiments, of
which the first ten are given in table 4.1.

The results in table 4.1 show that the use of transpositions in combination with pn-search
is favourable. Compared to the tree algorithm the practical DAG algorithm has used a factor
5.23 less nodes to prove the game-theoretical value of Tic-tac-toe. Section 5.5 shows that the
profit of transpositions becomes much larger when applied to large game trees.

The number of nodes are not the only results that have been compared. Table 4.2 describes
the average number of updates (measured in the test cases of table 4.1) that are needed for
a complete search. Omne ‘update’ in the practical DAG and tree algorithms denotes the
computation of proof and disproof number of a node.

In a tree the nodes on only one path (from the most-proving node to the root) need to be
updated. In a DAG it is possible that there exist more than one path from the most-proving

4.5. RESULTS

number of nodes
random seed || tree algorithm | practical DAG algorithm
1 13,376 3,261
2 16,797 3,248
3 15,813 3,091
4 15,325 3,108
5 16,766 3,250
6 15,093 3,367
7 16,682 3,131
8 17,278 3,216
9 16,618 3,169
10 17,747 3,331
‘ average H 17,086 ‘ 3,265

Table 4.1: A typical sample of test results on Tic-tac-toe.

average number of updates

tree algorithm | practical DAG algorithm
25,137 32,922

Table 4.2: Updates in Tic-tac-toe.

32 CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

O O

Figure 4.10: Two symmetrical positions.

node to the root. So compared with a tree the number of updates after an expansion in a
DAG will be much higher. Table 4.2 shows that the total number of updates in a DAG indeed
is much higher for the complete search than the number of updates in a tree. However, this
increase in the number of updates is more than compensated by the gain in the number of
nodes, because the creation of a node (generation of a child) is, in an implementation, a more
expensive operation than the computation of the (dis)proof numbers of a node. Moreover,
the number of updates can be reduced, which will be discussed in the next section.

The results of Tic-tac-toe show that using transpositions in combination with pn-search
results in a rather large gain. It also showed that the practical DAG algorithm is a usable
and good alternative for the theoretical DAG algorithm.

4.6 Enhancements, additional work and speed-up

In this section some additional work of the practical pn-search algorithm for DAGs will be
discussed. After that some enhancements for this algorithm as well as some techniques to
speed up the execution time of the algorithm are described. Finally some problems with
memory constraints are mentioned.

Additional work Compared with the tree algorithm the DAG algorithm has to do some
additional work. Each generated position has to be checked to see if the position is already in
the graph, in other words, whether the position is a transposition. If all (unique!) positions
in the graph are sorted, this checking costs ?log N comparisons, where N is the total number
of positions in the graph. The positions can be kept sorted by creating a binairy search tree
which contains each position that is in the graph. With the use of AVL techniques this binary
tree can be kept balanced, so the lower boundary of ?log N comparisons can be approached.
Nevertheless, the additional comparisons can for most domains be neglected with respect to
the gain on the total number of nodes visited during pn-search.

Enhancements Of course, all enhancements described in section 3.4 can also be applied
to DAG applications of pn-search. Moreover in a DAG structure another improvement can
be made.

A DAG arises when transpositions are used. If symmeltries of positions are interpreted as
transpositions, a larger gain can be made. A symmetry of a position P is a position P’ so
that P and P’ are isomorf with respect to certain permutations, like rotation and reflection.
For example the Tic-tac-toe positions in figure 4.10 are isomorf with respect to a rotation of

4.6. ENHANCEMENTS, ADDITIONAL WORK AND SPEED-UP 33

90 degrees, so these positions are symmetrical to each other. Using symmetries decreases the
number of nodes visited in a search. Appendix A shows some results that are obtained by
interpreting symmetries as transpositions in Tic-tac-toe.

Speed-up The speed-up techniques described in section 3.4 (quit updating as soon as the
proof and disproof number of a node have not changed) can also be applied to the practical
DAG algorithm, because in this algorithm the (dis)proof number of each node is directly
obtained from the (dis)proof numbers of its children. This means that if the proof and
disproof number of a node have not changed, all nodes on the paths from this node to the
root do not need to be updated anymore. Table 4.3 shows the number of updates that is
made by this technique applied to trees and DAGs. Note that with this simple technique, the
number of updates is this time much smaller for DAGs than for trees.

average number of updates

tree algorithm | practical DAG algorithm
18,894 9,816

Table 4.3: Reduced updates in Tic-tac-toe.

Because there are more paths from the most-proving node to the root, it is possible that
some nodes are part of more than one of these paths, such as the root of a DAG, that is
part of each path from the most-proving node to the root. The proof and disproof number
of these nodes are updated more than once, because of the recursive update procedure. This
can be prevented by using a queue in stead of a stack (recursion). If the (dis)proof numbers
of a node are updated, only the parents of this node that are not already in the queue are
inserted in the queue. The queue implementation can only be applied to search DAGs, for
which the length of all paths from each node to the root are equal (Tic-tac-toe, Connect Four
and Go-moku are examples of games that have such search DAGs). Only for these search
DAGs the use of queues guarantee that all children of a node V' have been updated before a
node V will be updated. A stack application does not guarantee this.

Memory problems In a tree the memory problem could partially be solved by deleting
subtrees of nodes for which the value already had been proven. This is not possible for DAGs.
In figure 4.11 the value of node b is proven to be a loss and the value of node ¢ is not proven
yvet. If b was a node of a tree both the subtrees of d and e could be deleted. But in this
example only the subtree of node d can be deleted, because the subtree of node e is also a
(part of a) subtree of the yet unproven node c.

This is, however, not the only problem. In the subtree of node d some nodes can occur
that later in the search will become a transposition. By deleting this subtree a lot of work is
deleted. Therefore it is possible that some work is done for the second (or third, or fourth,
etcetera) time, because this work is deleted with the subtree. This additional work was
supposed to be prevented by the use of transpositions.

Nevertheless some nodes can be deleted. A node that is proven to be a win or loss, just by
evaluating and not by pn-search (an end node), can be deleted. For each internal proven node,
the children that are terminals and not transpositions can be deleted. With these deletions,
no additional work has to be done.

34

CHAPTER 4. DAGS AND PROOF-NUMBER SEARCH

Figure 4.11: A DAG with a proven node.

Chapter 5

DCGs and proof-number search

If we are dealing with two-person games that can have repetitions of positions' , two major
issues have to be considered.

The first is the evaluation of a repeated position. This, of course, depends on the rules of
the game. In Nine Men’s Morris the game is a draw as soon as a repetition occurs. In Awari
and Chess the game is also a draw, but in these games only after the second repetition of
the same position. The number of repetitions for which a game terminates is not important
for a search technique. As soon as the second occurrence of a position has been found, this
position is marked as an end position. If the computed value of the first occurrence is a draw
with the aid of the second occurrence, the second occurrence would also be a draw if it had
a subtree (including a third occurrence which is an end position). The form of this subtree
would be equal to the form of the subtree with the first occurrence as the root and thus the
second occurrence would evaluate to a draw. So the assumption that the second occurrence
is a drawn end position is correct if the first occurrence would finally evaluate to a draw. If
it does not evaluate to a draw there is a variant that leads to a win or loss, which does not
contain the second occurrence. So during search it is correct to mark the first repetition of a
position as an end node.

The second issue is about the structure of the search graph. Because a repetition of a
position is also a transposition (the position can be reached via different paths) the created
structure is no longer a tree. Because of the repetition, the structure is not acyclic anymore
(and thus also no DAG), but it is a DCG (Directed Cyclic Graph).

This chapter discusses the DCGs in combination with pn-search. The first section char-
acterizes the problem that arises with DCGs and in the second section it is proved that the
most-proving node also exists in DCGs. The algorithm to determine such a most-proving
node is described in the third section. After that a practical algorithm is presented and the
chapter concludes with some results on DCGs.

5.1 The problem

Repetition of position in combination with transpositions (or hash tables) during the search
has been a known problem for many years. A ‘solution’ to this problem was given by Frey
(1977) in a chess implementation with use of hash tables. In his implementation he simply
ignored the problem. For Chess and Awari most of the time this will do. The number of

L A repetition of a position is a position that occurs as ancestor of itself in the game tree.

35

36 CHAPTER 5. DCGS AND PROOF-NUMBER SEARCH

Figure 5.1: Creating a cycle by expanding.

repetitions is small with respect to the total number of nodes examined during search, so
the possible problems caused by the repetitions can be neglected. On the other hand Gasser
(1991) showed, with the aid of databases, that the number of repetitions in Nine Men’s Morris
is relatively large. So in this application neglecting may turn out to cause serious problems.

The problems caused by repetition of position in combination with transpositions will be
clear if the goal of transposition use will be specified again:

Transposition use prevents the recomputation of subtrees, thus reducing compu-
tation time and memory usage.

In figure 5.1 three example graphs are denoted. In the left-most graph node e is a DAG-like
transposition node. This will not cause any problem. In the second graph node e has been
expanded and it generated two children. Child g is a ‘normal’ terminal but child &’ represents
the same position as node b. Because we want to prevent equal positions in a graph, node o’
has to be removed and node b becomes a transposition node. This generates the third graph
which is, because of the cycle b-e-b a DCG.

A nice property of a tree or a DAG node is that its value is unique for the node and only
depends on the values of the subgraphs of the successors. In DCGs this property does not
hold. The value of, for example, node e in the third graph of figure 5.1 depends on the path
leading to e. If e is entered via node b (path a-b-e), then the left child of e (node b) is a
repetition and therefore has to be interpreted as an end node. If, on the other hand, node e
is entered via node ¢, node b is not a repetition and therefore not an end node. So for node e
two different situations can occur and it is possible that node e does not have a unique value.
The same holds for node b. Its value depends of the ancestors on the paths a-b and a-c-e-b.

It is not only impossible to assign some DCG nodes a unique value, it is also not possible
to compute unique proof and disproof numbers for each node. The next section will prove
this.

5.2 Most-proving node exists

Despite the problems a DCG causes to prove a value of some given position with pn-search,
the basic assumptions for pn-search are still applicable: the proof and disproof set can be
defined, using which a most-proving node can be determined. So among the terminals in the
DCG, a terminal may exist that contributes to both proof and disproof. Such a most-proving

5.2. MOST-PROVING NODE EXISTS 37

repetition

Figure 5.2: A DCG converts to a tree.

node must have the property that it is both in a smallest proof set and a smallest disproof
set of the root. For DAGs the existence of a most-proving node was proven with the aid of
induction: for each unproven node in the DAG the intersection of the smallest proofset with
the smallest disproof set is not empty. With the aid of figure 5.2 it will be proven that not
each node in a DCG has a unique most-proving node. In this figure a DCG (at the left) is
converted to a tree (at the right) by creating a unique path in the tree for each possible path
in the DCG. Nodes with equal labels represent equal positions. If for each node in a DCG
a unique set of most-proving nodes exists then all nodes with equal labels in the tree of the
converted DCG must have the same sets of most-proving nodes. The tree in figure 5.2 proves
the opposite. Node i in the left subtree of root @ has a set of two most-proving nodes [and
m (most-proving paths are denoted with bold edges). On the other hand node ¢ in the right
subtree has only node f as most-proving node. So despite both nodes having equal labels the
sets of most-proving nodes are not equal. So not every node has a unique set of most-proving
nodes.

The most interesting node in trees and DAGs is the root. A terminal in the intersection
of the smallest proof and smallest disproof set of the root contributes most to the proof of the
game-theoretical value of the position in which we are interested (this position is represented
by the root). The root in a tree or a DAG has a special property: it is the only node that
has no incoming edges, in other words, it is not a successor of any node in the tree (or DAG).
It is not necessary that such a node exists in a DCG, because it is possible to create a DCG
such that each node is a node in a cycle; each node in that DCG is a successor of some other
node. To force that a DCG does have a root with no incoming edges, the following definitions

38 CHAPTER 5. DCGS AND PROOF-NUMBER SEARCH

are needed:

DCGT isa DCG in which one node V has been added, so that V has no incoming edges and
only has one outgoing edge. The outgoing edge points to the node in the DCG that
contains the position of which the game-theoretical value has to be proven.

DCG-root is the unique node in a DCGT without incoming edges.

If it is possible to determine the game-theoretical value of the DCG-root, then this value must
be equal to the value of the position under examination. Starting in the DCG-root only one
move is possible. So if the DCG-root has ‘a win’ (or ‘a not win’) value, then that only move
must be a won (resp. lost) move to another node with a won (lost) position. This is the node
that contains the ‘to be proven’ position. This also means that if the most-proving node of
the DCG-root exists that it is a terminal that contributes most to the proof of the value of
the ‘to be proven’ position.

Theorem 2 Any unproven search DCGT has a most-proving node.

Proof:

Fach terminal in the DCG (and DCGT™) has no successors. So the terminal that
contributes most to the proof of the value of the terminal is the terminal itself.
Fach terminal is unique in a DCG and therefore the complete proofset is unique.
So if a DCG™ is converted to a tree (like in figure 5.2), any pair of terminals with
equal labels has equal (labeled) most-proving nodes. So these terminals can be
joined together without loosing information. This joining creates a special type
of a DAG. In figure 5.3 a formal construction is described that converts a DCG™T
into a DAG such that each terminal has initial complete (dis)proof sets. With
the terminals initialized, the complete (dis)proof sets of each internal node of the
created DAG can now be determined (see figure 3.2). According to theorem 1 each
node in a DAG has a most-proving node. There is only one path in the DCG™T
from the root to a node that has a unique label in the constructed DAG. So the
complete (dis)proof sets of these nodes are also unique. This means that for each
of these nodes the intersection of the smallest proof set and the smallest disproof
set can be determined and (according to theoreom 1) is not empty. The DAG’s
root is such a node with a unique label, because it is ‘created’ by the DCG™’s
root in the convert construction. The root of the DCGt (DCG-root) has, by
definition, no incoming edges. So during the construction to a DAG it can only
be pushed one time on the stack (the first time) and therefore can not generate
more occurrences in the DAG.

So the DCG-root has a unique complete (dis)proof set and therefore a most-
proving node.

a

Although the most-proving node exists, the proof shows that determining it may be a
hard problem. The next section deals with this problem.

MOST-PROVING NODE EXISTS

InitStack (stack);
CreateDAG-Root (DCG-root);
Push (stack, DCG-root);
while not Empty (stack) do
Pop (stack, V);
for each child s of V do
if s is internal node in DCG then
CreateNode (s);
CreateEdge (V, s);
if s on path from root(DAG) to V in DAG then
s.complete-proof-set = §;
s.complete-disproof-set = {(i};
else
Push (stack, s);
fi
else
if s represents a won end position then
CreateNode (s);
CreateEdge (V, s);
s.complete-proof-set = {0}
s.complete-disproof-set = ()
elseif s represents a lost end position then
CreateNode (s);
CreateEdge (V, s);
s.complete-proof-set = ()
s.complete-disproof-set = {0}
elseif s not already in DAG then
CreateNode (s);
CreateEdge (V, s);
s.complete-proof-set = {{s}}
s.complete-disproof-set = {{s}}
else
CreateEdge (V, s);
fi
fi
od
od

Figure 5.3: Converting a DCG™ to a DAG.

39

40 CHAPTER 5. DCGS AND PROOF-NUMBER SEARCH

5.3 Theoretical algorithms

The proof of theorem 2 shows a way to determine the most-proving node in a DCG. This
proof converts a DCG to a DAG and in a DAG the most-proving node can be determined.
This converting can also be done implicitly.

In a DCG each possible path will be examined depth-first, building implicitly a (labeled)
tree. Each unproven terminal of the DCG is an unproven terminal in the tree and in a
tree the most-proving node can be recursively determined. During the depth-first search no
information about a most-proving node may be lost. Because the implicit tree can have equal
labeled terminals (these terminals are joined together in the DCG to DAG conversion in the
proof of theorem 2) the tree can be interpreted as a DAG. In a DAG information about the
effect of a transposition must be stored. This information can be stored in (dis)proofDNFs (see
section 4.3). In the interpreted DAG (the labeled tree) a node can only be a transposition if it
is a terminal, but it is hard to find out whether a terminal in the DCG will be a transposition
in the converted tree. To avoid this problem the complete (dis)proof set of each node in the
tree can be computed in stead of the (dis)proof DNF. The depth-first algorithm that computes
the complete (dis)proof sets for the root of the DCG is described in figure 5.4. If the complete
(dis)proof sets are computed it is easy to determine the most-proving node.

This algorithm is, of course, not practically executable. After each expansion each node in
the DCG has to be examined again at least one time to compute the new complete (dis)proof
sets of it in the converted tree. Besides the expensive execution time, the storage of the
complete (dis)proof sets is very expensive. Although the number of stored complete (dis)proof
sets is relatively low (a maximum of d complete (dis)proof sets, with d the depth of the
converted tree) the number of elements in the complete (dis)proof sets grows exponential. For
a uniform tree with depth 4 and branching factor 3 (so the tree has 3* = 81 terminals) and
the label of each terminal is unique (no transpositions) the complete disproof set of the root
has 3'2 minimal disproof sets each containing 9 terminals. This exponential growth cannot
be prevented by using the (dis)proof DNFs instead of the complete (dis)proof sets. Although
the number of elements of the DNFs will be much lower it still grows exponentially.

The algorithm described above is not an incremental algorithm. This means that after
each expansion each node has to be examined again. Despite the fact that it is impossible
to compute a correct unique value for each node it is possible to compute some unique value
for each node and with the aid of these values a kind of incremental update can be made
in the DCG. The ‘unique’ complete (dis)proof set of a node V in the DCG is the complete
(dis)proof set that V' has if a converted tree would be built with V' as the root of the DCG.
Suppose that each node in the DCG in figure 5.5 has this ‘unique’ complete (dis)proof sets.
Because node e has complete (dis)proof sets assuming that each successor node of e is not an
ancestor node, the complete (dis)proof sets of ¢ are directly derived from its children e and f,
because each ancestor of ¢, and ¢ itself, are no successors of e. So the assumption for which
the complete (dis)proof sets of e were computed is still a correct assumption for node ¢. On
the other hand, the complete (dis)proof sets of b cannot be directly derived from his children,
because the sets in e are computed assuming that b as successor of e is a first occurrence. But
looking from the perspective of node b itself, this is no longer a correct assumption (the first
occurrence of b in the converted tree with e as root, is the second occurrence in the converted
tree with b as root. So the complete (dis)proof sets of b must be computed independent of
the sets of e. If the sets have been computed for b the sets of a can be derived directly from
its children.

5.3. THEORETICAL ALGORITHMS

procedure ComputeCompleteSets (V' : node, path : PATH-TYPE,
out compl-proof-set, compl-disproof-set);
begin
if V is Terminal then
if V represents a won position then
compl-proof-set = {(};
compl-disproof-set = §;
elseif V represents a lost position then
compl-proof-set = {;
compl-disproof-set = {{i};
else
compl-proof-set = {{V}};
compl-disproof-set = {{V}};
else
if V on path then /* repetition of position ! */
compl-proof-set = {;
compl-disproof-set = {{i};
else
AddToPath (path, V);
if V is a Maxnode then
compl-proof-set = {{};
compl-disproof-set = {;
for each child s of V do
ComputeCompleteSets (s, path, tmp-proof-set,
tmp-disproof-set);
compl-proof-set = compl-proof-set W tmp-proof-set;
compl-disproof-set = compl-disproof-set U tmp-disproof-set;
od
else
compl-proof-set = {;
compl-disproof-set = {(};
for each child s of V do
ComputeCompleteSets (s, path, tmp-proof-set,
tmp-disproof-set);
compl-proof-set = compl-proof-set U tmp-proof-set;
compl-disproof-set = compl-disproof-set & tmp-disproof-set;
od
fi
RemoveFromPath (path, V);

end

Figure 5.4: Computing the DCG (dis)proof sets.

41

42 CHAPTER 5. DCGS AND PROOF-NUMBER SEARCH

Figure 5.5: A DCG with a cycle and a transposition.

Generally, the complete (dis)proof sets of a node V' in the DCG that is both a transposition
and on a cycle in the DCG, cannot be derived from the sets of its children. These sets must
be computed separately. For each other node in the DCG the sets can be derived from the
children. This has a big advantage. Suppose that in figure 5.5 node f will be expanded and
the generated children cause no new cycles in the DCG. Then the only nodes that have new
complete (dis)proof sets are f, ¢ and a, so these are the only nodes for which new complete
(dis)proof sets must be computed. If on the other hand node d or g will be expanded, then
the sets of all nodes (except f) must be recomputed.

In DAGs the algorithm to find the most-proving node makes use of (dis)proof DNF's but
in this incremental DCG algorithm this is impossible, because with a substitution a correct
unique (dis)proofDNF of the transposition to be substituted is needed. But the sets stored
in the nodes of the DCG are not always correct to substitute, so the DNF method cannot
be applied here. Therefore the complete (dis)proof sets must be computed to ensure the
determination of a correct most-proving node.

Although this algorithm has the advantage of an incremental update its disadvantages are
at a par with the algorithm first described algorithm. The storage of the complete (dis)proof
sets is still an exponential problem. Although at first sight the incremental algorithm is likely
to be faster than the first algorithm, this is not always the case. If for a transposition node
on a cycle the sets must be (re)computed, a lot of nodes must be examined again. This has
to be done for each of the nodes that are visited during the update.

It is clear that both algorithms cannot be used for practical applications. In other words,
the aim of correctly determining a most-proving node is too difficult to achieve.

5.4 Practical algorithms

The largest problem in DCGs is the fact that it is impossible to derive a unique proof and
disproof number for each node in the DCG. Still, this is necessary to develop an eflicient and
practically usable pn-search algorithm. In the previous chapters it was shown that algorithms
are practically applicable if the (dis)proof numbers of each node can be directly derived from
the (dis)proof numbers of his children, because an incremental update is possible in such a
case.

For an incremental update, however, a DCG has two difliculties. First, it is impossible

5.4. PRACTICAL ALGORITHMS 43

Figure 5.6: A DCG with proof and disproof numbers derived from the children.

to find unique values for each node. In section 5.3 a method is described in which for each
node in the DCG certain unique values are defined, but the computation of these values is
very time expensive. The memory problem with the complete (dis)proof sets can be avoided
by using only a proof and a disproof number. The same has been done in the practical DAG
algorithm.

The second difficulty is caused by the cycles in the DCG. Suppose that each node has
some unique (dis)proof numbers, directly derivable from its children, like in figure 5.6. It
is clear that the (dis)proof numbers of each internal node are derived from the (dis)proof
numbers of its children. Suppose node ¢ is the node to be expanded and it generates three
children (denoted by the dotted nodes). Each child generated is initialized with (dis)proof
numbers (1,1). After ¢’s expansion, the (dis)proof numbers in the DCG have to be updated:
node ¢ is assigned (1,3) and node a (2,2). Because the (dis)proof numbers of @ are changed,
the (dis)proof numbers of its parents can change, too. Therefore node b has to be updated:
it receives (1,3). Thereafter the values of node a have to be updated again: (2,3), and after
that the values of node b updated again: (1,4) and @ again: (2,3). The (dis)proof numbers
of @ have been updated three times in this example and if ¢ had generated more than three
children, the deriving of stable values for node a would require even more iterations. In the
worst case, if node ¢ evaluates to a loss ((dis)proof numbers: (00,0)) for example, an infinite
number of iterations is, theoretically, needed to derive the stable values of node a (and b).

The opposite, forcing that each node will be updated at most one time, after an expansion,
does not work either. Suppose that in figure 5.6 the proof and disproof number of each node
are computed after expansion of node b (node ¢ is not expanded). If terminal d now evaluates
to a loss, its values will be (00,0). We have already seen that with these values the value of
a can be proven to be a loss. But if each node will be at most updated once, the values of
a are not (00,0), but (3,1). Because the value of @ is not proven yet, a new most-proving
node needs to be found. Because node c is the only unproven terminal left, it must be the
most-proving node and therefore will be expanded. Again it will take a long time before a
value is proven.

The two methods described above make clear that the troubles are caused by cycles.
So the solution may be to prevent the appearance of cycles in the search structure. Three
methods come to mind.

The first method is to neglect all kind of transpositions, but in that case the created
structure is a tree, and a lot of additional (unnecessary) work will be done in proving a value.

44 CHAPTER 5. DCGS AND PROOF-NUMBER SEARCH

Figure 5.7: Missing a won variant by incorrect assumption.

This additional work was aimed to be avoided by the use of transpositions.

The second method is to consider only the positions after a converting move as a (possible)
transposition (for example in chess all positions after capture moves, pawn moves or castling).
Although the number of visited nodes decreases with respect to the number of vistited nodes
in a tree (thus without using transpositions) still a lot of equal positions remain in the DAG.

The third method in avoiding cycles reduces the number of equal positions in a DAG
to two, of which one always is an end node. Fach new generated position p is checked for
two things. First it is checked whether p is generated earlier in the search DAG. If so, then
this position is a transposition. It will be treated as a transposition unless this position is
on at least one path from the new generated position to the root. If this is the case then p
is considered to be an end position and not as a transposition, because that would create a
cycle. The (dis)proof numbers of the new node, node V', that represents this end position,
are initialized with the interpretation of a draw position. If, for example, a draw is interpreted
as a loss, then the (dis)proof numbers of node V' become (00,0). End node V' keeps proof
and disproof number (00,0) as long as the value of the other node, say V, representing the
same position as V', does not prove the opposite. If, however, the value of V' is proven to be
a win (the opposite), then this is proved with the (for node V correct) assumption that the
value of V' is a loss. But if the value of node V is a win, then V represents a won position,
and therefore the equal position represented by V' is also won. So the proof and disproof
number of V'’ must be reset to (0,00) and the (dis)proof numbers of each ancestor of V'’ must
be updated.

If with these assumed values the value of the root is proven to be a win, then a won variant
exists that leads from the root to some end node that represents a won position. This variant
does not contain the (possibly wrong) assumed end positions. So despite of the fact that the
assumptions might be wrong, the proof of the value is correct.

If, however, the value of the root is proven to be a loss, it is possible that a won variant is
missed. In figure 5.7 node €’ represents the same position as node e. Now suppose that node
d is going to be expanded and that it will evaluate to a loss. Then the (dis)proof numbers of
nodes b and a will be updated to (00,0) and therefore it is proven (with the assumption that

5.5. RESULTS 45

node €’ is a lost end position) to be a loss. If, however, node g would evaluate to a win, then
node e would be a win, too. So in that case the assumption that node e’ represents a lost
position is wrong. In fact if it was known that the value of node €’ would be a win, then A, f,
¢ and a would evaluate to a win, too. So a won variant is missed if €’ is assumed to represent
a lost end position.

Despite this incorrectness, the algorithm derived from this method is useful, which is
shown by the results in the next section. The pseudo code for this algorithm is equal to the
pseudo code for the DAG algorithm (it is, in fact, a DAG algorithm) with a small extension
to the ezpand procedure (see figure 4.8 in section 4.4). In this procedure it must be checked
whether a new generated position p, which is a transposition, is on a path to the root. If this
is the case, a new (end) node, say node V', representing p, is created with (dis)proof number
equal to the draw interpretation, unless the value of the other node that represents p, say
node V', has already been proven to be the opposite of the draw interpretation.

The update procedure is a little more difficult, because if the value of a node V' is proven
to be a win and an end node V' exists, representing the same position as V', with the assumed
‘loss’ value, then the proof and disproof number of V' must be reset. So the algorithm needs
a (directed) link from node V to node V'. This link can be created in the expand procedure.

It is important not to update the (dis)proof number of the parent(s) of a node, if both
proof and disproof number of that node are not changed. Suppose the proof and disproof
number of a node V' are just reset, because the value of a node V', which represents the same
position as V', is proven to be a win. Then all ancestors of V' must be updated. One of the
ancestors of V' is V. After updating V', the value is, of course, again proven to be a win. So
V'’ must be reset and now an updating cycle will occur, if again all ancestors are updated. If,
however, the ancestors of an ‘unchanged’ node are not updated then the endless loop will be
avoided.

5.5 Results

This section contains the performances of the latter practical DCG algorithm, described in
the previous section. The practical DCG algorithm has been applied to chess positions, which
are all described by Krabbé (1985) and Reinfeld (1958). All these positions are won for white.
The performances of the DCG-pn algorithm will be compared with the performances of the
tree-pn algorithm. The results of the tree algorithm are obtained by (Breuker et al., 1994).
For both tree and DCG algorithm a special initialization for proof and disproof number in the
terminals not representing end positions, has been used. The proof number of a min node is
initialised with the number of moves the min player can do. The proof number is initialized
with one. For a max node, the disproof number is initialized with the number of moves the
max player can do and the disproof number with one.

The results of the algorithms on 35 positions from Chess Curiosities have been listed in
table 5.1. In appendix B the results on the other test positions have been listed. In table 5.1
and the tables in appendix B the first column contains a number representing the test posi-
tion. The number corresponds to the problem number. The second column, labeled with tree
algorithm, contains the number of nodes visited by the tree algorithm. The column labeled
with DCG algorithm contains the number of nodes visited by the practical DCG algorithm.
The last column contains the gain factor. If both algorithms did not prove a win for a position

‘7. The tree search was terminated after 1,750,000 nodes

then the gain factor is denoted as

46 CHAPTER 5. DCGS AND PROOF-NUMBER SEARCH

were held up in memory. The DCG search was terminated after 800,000 nodes. Because the
tree algorithm removed the solved subtrees, sometimes more than 1,750,000 nodes could be
visited. The DCG algorithm did not remove any nodes during the search. In this implemen-
tation, transposition nodes are stored more than once. This explains the fact that the DCG
algorithm seems to terminate before the 800,000 nodes are reached.

The results in table 5.1 and in appendix B show that the DCG algorithm performs in
most of the tested positions better than the tree algorithm. More important is the fact that
in only 3 of the 82 tested positions it is sure that a won variant is missed (positions 206, 208
and 219 in table 5.1). One other position, 215, is solved but the DCG algorithm visited more
nodes than the tree algorithm.

As expected, the difference in the number of visited nodes of both algorithms grows with
the number of visited nodes in the tree. If the number of nodes is low in a tree, the chance
that a transposition occurs is rather small. Therefore the DCG algorithm will not perform
better than the tree algorithm. On the other hand, if the number of nodes in the tree is large,
it contains probably many equal positions. This explains the much better performance of the
DCG algorithm in, for example, position 284.

5.5. RESULTS

Table 5.1: Test results on chess positions from Chess Curiosilies.

position nr. || tree algorithm | DCG algorithm factor
008 1,110,701 590,492 1.9
035 296 276 1.1
037 43,221 21,865 2.0
038 273 272 1.0
040 > 2,162,847 > 724,408 -
044 > 2,112,804 271,219 > 7.8
060 1,724,491 365,063 4.7
061 42,228 34,333 1.2
078 > 2,501,127 > 769,362 -
192 23,290 14,302 1.6
194 229,423 28,400 8.1
195 > 1,795,039 > 652,568 -
196 298,428 78,741 3.8
197 323 318 1.0
198 247,435 151,150 1.6
199 370,016 151,804 24
206 15,978 > 647,160 | < 0.025
207 95,418 31,646 3.0
208 62,791 > 626,160 < 0.1
209 > 2,187,888 > 691,329 -
210 > 1,854,764 > 683,914 -
211 957 831 1.2
212 81,842 50,753 1.6
214 685 669 1.0
215 114,060 336,392 0.3
216 592,890 156,825 3.8
217 > 1,876,572 340,643 > 5.5
218 118,361 127,359 0.9
219 310,447 > 685,302 < 0.5
220 > 1,979,542 > 676,491 -
261 482 420 1.1
284 > 1,795,414 2,658 | > 675.5
317 173,480 114,346 1.5
333 145,922 104,991 1.4
334 217,516 116,952 1.9

47

48

CHAPTER 5. DCGS AND PROOF-NUMBER SEARCH

Chapter 6

Conclusions

After sketching the use of pn-search in common tree search, we tackled the problem of trans-
positions in game-tree search. It turned out that determining the theoretically correct most-
proving node is not an attainable goal, when pn-search is applied to DAGs. On the other hand,
the algorithms described for trees can also be applied to DAGs. Though the most-proving
node that is determined by this algorithm need not be theoretically correct, the algorithm is
efficient and seems always be better with respect to the number of nodes visited compared to
pn-search on trees.

The theoretically correct most-proving node in DCGs is even more difficult to achieve
than it is in DAGs. In fact, creating an algorithm that can run efficiently in a DCG is a
hard problem that is not solved during the research described in this thesis. Nevertheless the
algorithm described in section 5.4 seems to fulfil the goal of the research: using transpositions
in combination with pn-search. In most of the test cases it reduces the number of nodes, works
efficiently and in most positions a won variant was not missed. Therefore the DCG algorithm
is a strong alternative if tree algorithms cannot solve a position, especially for post-mortem
analysis.

The technique described in section 5.4 is not only a solution for transpositions and rep-
etitions in combination with pn-search, but it is applicable to all kinds of best-first search
techniques that uses transpositions.

Still a lot of improvements have to be done. The biggest problem for pn-search with
transpositions is reducing the memory size of the search DAG. Deleting solved subtrees or
subgraphs is only applicable for terminals in the DAG. Improvements on deleting (unimpor-
tant) nodes are necessary, to break through the memory constraint.

49

50

CHAPTER 6. CONCLUSIONS

Appendix A

DAG results on Tic-tac-toe

Below are the test results of the practical DAG algorithm applied to Tic-tac-toe. In these ex-
periments the DAG is not only created by transpositions, but also by interpreting symmetrical
positions as transpositions. Two Tic-tac-toe positions are symmetrical if they are isomorph
with respect to rotation and reflection. The results obtained by the standard tree algorithm
are the same as those of table 4.1 in section 4.5 and are given for comparison purposes only.
The average (last row) has been determined over hundred experiments, of which the first 10

are listed.

number of nodes
random seed || no transpositions | symmetrical positions
1 13,376 561
2 16,797 676
3 15,813 564
4 15,325 577
5 16,766 587
6 15,093 634
7 16,682 606
8 17,278 659
9 16,618 672
10 17,747 662
‘ average H 17,086 617

Table A.1: A typical sample of test results on Tic-tac-toe.

51

52

APPENDIX A. DAG RESULTS ON TIC-TAC-TOE

Appendix B

DCG results on Chess

Below are the results on test positions obtained from Win at Chess.

position nr. || tree algorithm | DCG algorithm || factor
001 7,640 5,782 1.3
004 82 82 1.0
005 57 57 1.0
006 71,966 9,563 7.5
009 207 198 1.0
012 175 173 1.0
014 324,542 155,761 2.1
027 77 77 1.0
035 527 339 1.6
049 16,546 13,920 1.2
050 183 183 1.0
051 227,361 129,293 1.8
054 85 85 1.0
055 31,456 25,446 1.2
057 113 113 1.0
060 69 69 1.0
061 78 78 1.0
064 137 137 1.0
079 152 152 1.0
084 93 93 1.0
088 759 687 1.1
096 1,640,786 595,457 2.8
097 107 107 1.0
099 75,411 60,718 1.2

Table B.1: Test results on chess positions from Win at Chess.

53

54

APPENDIX B. DCG RESULTS ON CHESS

position nr. || tree algorithm | DCG algorithm || factor
102 279 279 1.0
103 2,150 2,031 1.1
104 5,047 4,566 1.1
105 > 2,224,022 > 733,704 -
132 2,301 2,084 1.1
134 854 768 1.1
136 185 185 1.0
138 211,466 137,848 1.5
139 274 274 1.0
143 900 816 1.1
154 117 117 1.0
156 82 82 1.0
158 526 525 1.0
159 385,487 221,318 1.7
160 110 110 1.0
161 2,045 1,191 1.7
167 896 761 1.2
168 596,956 236,008 2.5
172 99 99 1.0
173 419 404 1.0
177 527 520 1.0
179 184 184 1.0
182 807,709 216,039 3.7
184 82 82 1.0
186 108 108 1.0
188 117 117 1.0
191 22,466 17,287 1.3
197 95 95 1.0

Table B.2: Test results on chess positions from Win at Chess.

position nr. || tree algorithm | DCG algorithm || factor
201 1,019,679 418,655 24
203 19,917 17,068 1.2
211 278 231 1.2
212 458 457 1.0
215 164 164 1.0
217 271 271 1.0
218 277,639 177,847 1.6
219 157 157 1.0
222 59,591 25,194 24
225 342 342 1.0
241 360,983 191,588 1.9
244 458 458 1.0
246 120 120 1.0
250 1,147 1,121 1.0
251 136,479 84,844 1.6
252 537,628 353,999 1.5
253 2,355 1,066 2.2
260 807 730 1.1
263 887 848 1.0
266 716 711 1.0
267 1,206 1,137 1.1
278 636 636 1.0
281 317,214 36,705 8.6
282 749 725 1.0
283 30,778 28,008 1.1
285 218 218 1.0
290 523 523 1.0
293 121,720 93,647 1.3
295 81 81 1.0
298 150 150 1.0

Table B.3: Test results on chess positions from Win at Chess.

55

56

APPENDIX B. DCG RESULTS ON CHESS

Bibliography

The numbers between parentheses after each bibliographic entry refer to the pages on which
a reference to the entry in question occurred.

Allis L.V. (1994). Games and Artificial Intelligence. PhD thesis, University of Limburg,
Maastricht, The Netherlands. To appear. (14)

Allis L.V. and Schoo P.N.A. (1992). Qubic Solved Again. Heuristic Programming in Artificial
Intelligence 3: the third computer olympiad (eds. H.J. van den Herik and L.V. Allis), pp. 192—
204. Ellis Horwood, Chichester, England. (14, 29)

Allis L.V. and Van den Herik H.J. (1992). Go-Moku opgelost met Nieuwe Zoektechnieken.
Proceedings of the N.A.I.C. ’92 (eds. De Swaan Arons, Koppelaar, and Kerckhoffs). Delftse
Universitaire Pers, Delft. (14, 29)

Allis L.V., Van der Meulen M., and Van den Herik H.J. (1991). Proof-Number Search.
Report CS 91-01, Dept. of Computer Science, University of Limburg. (1, 14, 15)

Allis L.V., Van der Meulen M., and Van den Herik H.J. (1994). Proof-Number Search.
Artificial Intelligence. To appear. (1, 14, 15)

Breuker D.M., Allis L.V., and Van den Herik H.J. (1994). Mate in 38: Applying Proof-
Number Search to Chess. Advances in Computer Chess 7. To appear. (15, 45)

Frey P.W. (1977). Chess Skill in Man and Machine. Springer-Verlag, New-York. (35)

Gasser R. (1991). Applying Retrogade Analysis to Nine Men’s Morris. Heuristic Program-
ming in Artificial Intelligence 2: the second computer olympiad. (eds. D.N.L. Levy and D.F.
Beal), pp. 161-173. Ellis Horwood Limited, Chichester, England. (36)

Gnodde J. Aida, New Search Techniques Applied to Othello. Master’s thesis, University of
Leiden, The Netherlands, (1993). (15)

Knuth D.E. and Moore R.W. (1975). An Analysis of Alpha-Beta Pruning. Artificial Intelli-
gence, Vol. 6, No. 4, pp. 293-326. (4)

Krabbé T. (1985). Chess Curiosities. George Allen and Unwin, Ltd, London. (45)

McAllester D.A. (1988). Conspiracy Numbers for Min-Max Search. Artificial Intelligence,
Vol. 35, pp. 287-310. (1)

57

58 BIBLIOGRAPHY

Neumann J. von (1928). Zur Theorie der Gesellschaftsspiele. Math. Ann, Vol. 100, pp. 295~
320. Reprinted (1963) in John von Neumann Collected Works (ed. A.H. Taub), Vol. VI, pp
1-26. Pergamon Press, Oxford-London-New-York—Paris. (3)

Reinfeld F. (1958). Win at Chess. Dover Publications, Inc., New-York. (45)

Uiterwijk J.W.H.M., Van den Herik H.J., and Allis L.V. (1990). A Knowledge-Based Ap-
proach to Connect-Four: The Game is Over White to Move Wins. Heuristic Programming
in Artificial Intelligence: The first computer olympiad. (eds. D.N.L. Levy and D.F. Beal),
pp. 113-133. Ellis Horwood Limited, Chichester, England. (14, 29)

Zermelo E. (1912). Uber eine Anwendung der Mengenlehre auf die Theorie des Schachspiels.
Proceedings of the fifth International Congress of Mathematics, Vol. 2, pp. 501-504. Cam-
bridge, England. (3)

