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Abstract

Victor Allis’ proof-number search is a powerful best-first tree search
method which can solve games by repeatedly expanding a most-proving node
in the game tree. A well-known problem of proof-number search is that it
does not account for the effect of transpositions. If the search builds a di-
rected acyclic graph instead of a tree, the same node can be counted more
than once, leading to incorrect proof and disproof numbers. While there are
exact methods for computing proof numbers in DAG’s, they are too slow to
be practical.

Proof-set search (PSS) is a new search method which uses a similar value
propagation scheme as proof-number search, but backs up proof and disproof
sets instead of numbers. While the sets computed by proof-set search are not
guaranteed to be of minimal size, they do provide provably tighter bounds
than is possible with proof numbers.

The generalization proof-set search with (P,D)-truncated node sets or��������� �
provides a well-controlled tradeoff between memory requirements

and solution quality. Both proof-number search and proof-set search are
shown to be special cases of

����� ��� �
. Both PSS and

����� ��� �
can utilize

heuristic initialization of leaf node costs, as has been proposed in the case of
proof-number search by Allis.

1 Proof Sets and Proof Numbers

Victor Allis’ proof-number search (PNS) [1] is a well-known game tree search al-
gorithm, which has been successfully applied to games such as connect-four, qubic
and gomoku. In contrast to many other methods, PNS does not compute a minimax
value based on heuristic position evaluations; rather its aim is to find a proof or dis-
proof of a partial boolean predicate � defined on a subset of game positions. The
usual predicate is CanWin(p), but predicates representing other goals such as the
tactical capture of some playing piece can also be used with proof-number search.

Proof-number search is a best-first method for expanding a game tree. It com-
putes proof and disproof numbers in order to find a most-proving node, which will
be expanded next in the tree search. Search continues until the root is either proven
or disproven.

There is a simple bottom-up backup scheme for computing proof numbers,
which is correct for trees. However, many game-playing programs use a transposi-
tion table to detect identical positions reached by different move sequences. Such
a table changes the search graph from a tree to a directed acyclic graph (DAG) or
even a directed cyclic graph (DCG). If the same backup method for proof numbers
is used on a DAG, it fails to compute the correct proof and disproof numbers, since
the same node can be counted more that once along different paths. The new al-
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gorithm of proof-set search (PSS) is designed to reduce this problem and thereby
improve the search performance on game graphs containing many transpositions.

The outline of the paper is as follows: the introduction continues with a short
description of proof-number search on game trees and on directed acyclic graphs,
and with an example that illustrates the problems of proof-number computation in
DAG’s. Section 2 describes the new method of proof-set search, and characterizes
it by a theorem establishing its dominance over PNS on the same DAG. On the
other hand, counterexamples show that even PSS cannot always select a smallest
proof set. Section 3 describes the algorithmic aspects of PSS in those areas where
it differs from PNS. Section 4 introduces the data structure of a � -truncated node
set, defines the generalization of PSS to PSS with (P,D)-truncated node sets or
��������� � , characterizes both PNS and PSS as special cases of ���	����� � , and proves
a generalized dominance theorem of ����� ��� � over PNS. Section 5 describes how
to use a heuristic initialization of leaf node costs in PSS and ��������� � . Section 6
closes with a discussion of future work, including the extension of PSS to cyclic
game graphs and potential applications of PSS.

1.1 Proof-number Search in a Tree

This introductory section describes the basic procedure of proof-number search.
For detailed explanations and algorithms, see [1]. Proof-number search (PNS)
grows a game tree by incrementally expanding a most-proving node at the fron-
tier. Nodes in a proof tree can have three possible states: proven, disproven, and
unproven. Search continues as long as the status of the root is unproven. After
each expansion, a leaf evaluation predicate � is applied to each new node, to see
whether it is defined in the corresponding game position. If yes, the new node can
be evaluated as proven (P = true) or disproven (P = false), while if � does not
apply, the node status becomes unproven. Proofs and disproofs are propagated to
interior nodes by using proof numbers. Interior nodes are proven by finding a proof
tree or disproven by finding a disproof tree. A proof tree 
 for a node � is a subtree
of the game tree with following properties:

1. � is the root of 
 .

2. In all leaf nodes of 
 , the predicate � is well-defined and evaluates to true.

3. If � is an AND node in 
 , then all of its successor nodes in the game tree are
also contained in 
 .

Analogous properties hold for a disproof tree 
 of � :

1. � is the root of 
 .
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2. In all leaf nodes of 
 , the predicate � is well-defined and evaluates to false.

3. If � is an OR node in 
 , then all of its successor nodes in the game tree are
also contained in 
 .

PNS maintains proof and disproof numbers for each node in a game tree, and
updates them after each expansion. These numbers can be interpreted as the size
of a minimal proof or disproof set: a smallest set of currently unproven terminal
nodes of the tree with the property that (dis)proving all nodes in that set would
create a (dis)proof tree for the root node. An impossible (dis)proof is represented
by an infinite (dis)proof number.

Proof and disproof numbers are used to select a most-proving node to expand
next. They are computed by a simple backup scheme. Each search node � stores
a proof number � ��� ��� and a disproof number � ��� ��� . For an unproven frontier
(or leaf) node � , set � ��� ���	�
� ��� ������ . A proven frontier node is assigned
� ��� ����������� ��� ������� , while a disproven node obtains � ��� ����������� ��� ������� .
For non-frontier or interior nodes, let the children of a node � be ������������� �� . The
backup rules for proof and disproof numbers are as follows: In an AND node, the
proof number is computed as the sum of the proof numbers of the children. In an
OR node, the proof number becomes the minimum among the proof numbers of
all children.

AND node: � ��� �����!� ��� � � �#"$� ��� ��%&�#"������&"$� ��� �  �
OR node: � ��� �����('*),+-�.� ��� �����&�/� ��� � % �&���������/� ��� �� &���

Disproof numbers are computed by taking sums at OR nodes and minima at
AND nodes.

OR node: � ��� �����(� ��� ������"0� ��� � % ��"(������"!� ��� �� ��
AND node: � ��� �����('1)2+-�3� ��� � � �&��� ��� ��%��4�������5��� ��� �  ���

The most-proving node to expand next can be found by traversing the graph
from the root to a frontier node, selecting a child with identical proof number at OR
nodes and a child with identical disproof number at AND nodes. After expanding
a node, proof and disproof numbers of that node must be recomputed, and changes
propagate upwards in the tree.

1.1.1 Heuristic Initialization of Proof Numbers

Proof numbers can be viewed as a lower bound on the work required to prove a
node. The standard algorithm assigns the same estimate of 1 to each unproven leaf
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node. However, game-specific knowledge can be used to provide different initial
estimates. Allis [1] proposes to use a heuristic initialization �-� ��� for the proof and
disproof numbers of new frontier nodes � . Such a heuristic initialization can be
viewed as a heuristic lower bound estimate of the work required to prove � . Using
the constant function � � ������� yields the standard algorithm.

1.2 Proof-number Search in a Directed Acyclic Graph

The basic algorithm for proof-number search on a tree can also be used for di-
rected acyclic game graphs (DAG) with some small modifications. However, proof
numbers can overestimate the size of proof sets. Therefore the algorithm cannot al-
ways find a minimal proof set, and it can fail to identify a most-proving node, even
though such a node always exists even in a DAG [6, 1]. The following example
shows how tree backup in a DAG overestimates proof numbers.

Figure 1: Overestimating proof numbers in a DAG

Example 1 Consider a DAG with an AND node � at the top and 4 OR nodes� ���1��� ��� as children. Furthermore, let
� ��� and � have the same single child�

, and let � ’s two children be
�

and 	 .
The proof numbers of the leaves

�
and 	 are initialized to 1. The proof num-

bers of
� �����
� are also all equal to 1 since these are OR nodes, which obtain the

minimum proof number of their children, and they all have a child with proof num-
ber 1 but no child with proof number 0. The proof number of � is greatly overesti-
mated by the tree-backup scheme as � ����� ���!� ��� � ��" � ����� ��" � ��������" � �����1�#�

. The true value of � ����� � is 1, since proving the single frontier node
�

proves
� , but

�
is counted four times by the algorithm. The example can easily be ex-

tended, to make the difference between true and computed values arbitrarily large,
by adding further nodes at the OR level which are only connected to � above and
to

�
below. If such a DAG occurs as part of a larger problem, the overestimate

of � ’s proof number can be very costly. It can greatly delay the expansion of the
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sub-DAG below � , and lead the search into different parts of the DAG for a long
time, even though

�
is a very good candidate node. Expanding

�
could lead to a

quick proof of
�

and thereby � . This may be by far the fastest - or even the only -
way to solve the overall problem.

To overcome the problem of overestimation, Schijf [6, 7] has developed exact
methods for computing proof numbers in DAG’s and identifying a most-proving
node. Unfortunately, these methods seem to have a huge computational overhead
and have turned out to be impractical even in tests on small Tic-Tac-Toe game
DAG’s. The new method of proof-set search reported here lies in between proof-
number search and Schijf’s exact method, both in terms of complexity and solution
quality. Furthermore, by using truncated node sets, the tradeoff between informed-
ness and memory overhead of proof-set search can be controlled precisely.

2 Proof-Set Search

Proof-set search, or PSS, is a new search method which uses the simple children-
to-parents propagation scheme for DAG’s. Instead of using proof numbers, which
are an upper bound on the size of the minimal proof sets in a DAG, PSS backs
up proof sets directly. While the sets selected by PSS cannot be guaranteed to be
minimal, they provide provably tighter bounds than is possible with proof numbers
only. This can lead to a better node selection and thereby to a smaller (dis)proof
DAG being generated. The prize for better approximation is that more memory
and time per expansion step is needed to store and propagate sets of nodes instead
of numbers.

2.1 Backup Algorithm for Proof Sets

The algorithms for proof-set search are similar to the ones for proof-number search
[1]. Each search node � stores both a proof set � 
�� � � ��� and a disproof set � 
�� � � ��� .
For unproven frontier nodes, set � 
�� � � ���!� � 
�� � � ���!� � ��� . An impossible
(dis)proof is indicated by a set of infinite size, represented by the symbol ���	� . A
proved frontier node is assigned � 
�� � � ��� ��
���� 
�� � � ���������	� , while a disproved
node obtains � 
�� � � ���1����� � ��� 
�� � � ��� �
 . For interior nodes � , with children
�#����������� �� , the backup rules for proof and disproof sets are as follows: In an AND
node, the proof set is defined to be the union of the proof sets of all children. In
an OR node, the proof set is the minimal set among the proof sets of all children,
computed by a function set-min according to some total ordering of node sets.

AND node: � 
�� � � �����!� 
�� � � ��� ���1� 
�� � � � % ��� �������1� 
�� � � �� �
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OR node: � 
�� � � ����� set-min �,� 
�� � � �����&�/� 
�� � � � % �&���������/� 
�� � � �� �� �
Disproof sets are backed up analogously, taking minima in AND nodes and

unions in OR nodes.

OR node: � 
�� � � �����(� 
�� � � � � ���	� 
�� � � ��%�� � �������	� 
�� � � �  �
AND node: � 
�� � � ����� set-min �3� 
�� � � �����&��� 
�� � � � % �&������� ��� 
�� � � �� ����

The following rules define a simple total order on node sets, which is close to
the spirit of the original PNS:

1. A smaller set is always preferred to a larger one.

2. To break ties between sets of the same size, first define a total ordering of
single nodes. For example, the ordering given by a depth first traversal of the
DAG, the order of node expansion, or even the memory address of a node
can be chosen.

As notation, let ��� � � % if ��� precedes � % in the chosen total order on single
nodes. Sort each set 
 � � ������������� �� � such that ��� � � % � ����� � �� . Then a total
ordering of sets of nodes can be defined as follows:

1. 
 � � 
 % if
� 
 � � � � 
 % � .

2. 
 � � 
 % if
� 
 � � � � 
 % � and 
 � precedes 
 % in lexicographical ordering. In

other words, given two sorted sets of equal size 
 � � � ����������� � �� �� and

�% � ��� � �����������  � , 
 � � 
�% iff there is an � �����	�
�	� , such that �� �����
for all � ������� � � , and ��� � ��� .

The function set-min is obtained from this ordering by setting set-min ��� ���&���
��� ����� . Another possible ordering, using node evaluation as a heuristic
measure of proof effort [1], is given in Section 5. Set operations are extended
to ���	� in the natural way, by 
 � ��� � ���� � and set-min � 
 � ���	� � � 
 for all
finite sets 
 , and by � �	� � ���	��� ��� � and set-min � ���	� � ���	� ��� ���	� .

Example 2 See Figure 2. Assume that the nodes of Example 1 are ordered � �
� � � � � � � � � � 	 , and that tie-breaks among sets of the same size are
resolved by a lexicographical ordering of the sorted lists of elements, so that for
example � � ��� ��� � �� � ��� � � � � � � ��� � 	 � . Then the computation of proof
and disproof sets proceeds as follows:

1. � 
�� � � � ���(� 
�� � � � � � � � � , � 
�� � � 	1���(� 
�� � � 	 � � � 	 � .
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Figure 2: Computing proof and disproof sets in a DAG

2. � 
�� � � � � � set-min �,� 
�� � � � ��� � � � � . � 
�� � � � ����� � � 
�� � � � ����� � � � .
3. In the same way, � 
�� � � �1� ��� 
�� � ��� � � � � � and � 
�� � � �1� � � 
�� � � ��� �
� � � .

4. � 
�� � ���1� � set-min � � � � � � 	 � �	� � � � and � 
�� � ���1� � � � � � � 	 �0�
� � � 	 � .

5. � 
�� � ��� � � � �.� 
�� � � � �&� � 
�� � � � �4� � 
�� � � ���&�/� 
�� � ���1����� � � � .
6. � 
�� � ��� ��� set-min �3� 
�� � � � �������5� 
�� � ���1���-� set-min � � � � � � � ��	 � ��� � � � .

By using proof sets instead of proof numbers, the root’s proof set has cardinality
1, whereas the proof number computed by PNS was 4. So with proof sets, the
promising node

�
is likely to be expanded much earlier.

2.2 Identifying a Most-Promising Node

In proof-number search on trees, a most-proving node always exists, and it can
easily be identified. (Dis)proving a most-proving node reduces (dis)proof number
of the root by at least one.

Schijf [6] proves the existence of a most-proving node in a DAG. However,
it is not easy to identify such a node. Schijf develops theoretically correct but
impractically slow algorithms to identify a most-proving node. On the other hand,
since PSS uses a locally greedy heuristic to select a minimal set, it can not always
identify a most-proving node. However, PSS computes a most-promising node
(mpn) which lies in the intersection of the proof and disproof sets computed for the
root node by an efficient PNS-like backup scheme. The following theorem states
that such a most-promising node always exists.
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Theorem 1 Given a DAG 	 , compute proof and disproof sets using PSS. Then for
each unproven node � , the intersection of proof and disproof set, � 
�� � � ������� 
�� � � ��� ,
is nonempty.

The induction proof follows the lines of the analogous theorem for proof num-
bers in [6]:

1. The theorem holds for all unproven leaf nodes � since � 
�� � � ��� �(� 
�� � � �����
� � � .

2. Let � be an unproven AND node with unproven children � � � ������� � �  � �����
� . Assume the induction hypothesis holds for all these children. Let � � be a
node such that � 
�� � � �����(� 
�� � � � � � . Since � 
�� � � ��� ���	� 
�� � � ��� � is nonempty
by the induction assumption, let � be a node in the intersection. Then ���
� 
�� � � ��� and since � 
�� � � ���	� � 
�� � � � � � , it follows that �
� � 
�� � � ��� .

3. The proof for OR nodes is obtained by interchanging the roles of � 
�� � and
� 
�� � in step 2.

2.3 Dominance of Proof-Set Search over Proof-Number Search

As a more informed search method, proof-set search dominates proof-number
search in the following sense:

Theorem 2 For each node � in a DAG 	 , the size of the proof (disproof) set com-
puted by PSS is less than, or equal to the proof (disproof) number of � computed
by proof-number search on 	 .

� � 
�� � � ��� � � � ��� ���
� � 
�� � � ��� � �0� ��� ���

We omit a proof here, since Theorem 2 is a special case of the more general
Theorem 6, which will be proven in Section 5.

Note that the result holds only for PSS and PNS operating on the same DAG.
The theorem cannot compare nodes in the two different DAG’s which are gen-
erated when PNS and PSS respectively are used as the algorithm to select most-
promising nodes for expansion. Since these two DAG’s are generated by different
mechanisms, their shape and their node sets may be completely different, and are
therefore not comparable.
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2.4 Proof-Set Search Does Not Always Select a Smallest Proof Set

As mentioned in Section 2.2, PSS uses a locally greedy heuristic to select a mini-
mum set among all unproven children. A local method cannot always choose a set
that will perform best when taking unions with other sets further up in the DAG.
In the worst case, PSS can do no better than PNS. In the following two examples,
PSS fails to find a smallest proof set.

Figure 3: PSS fails to find a smallest proof set

Example 3 In Figure 3, it is easy to see that � � � 	���� � is the minimal proof set
for the root � . This set is necessary to prove node � , which in turn is needed to
prove

�
, which is required to prove � . On the other hand, proving � also proves

the only other child of � , node � , so a complete proof of � is obtained by proving
� � ��	 ��� � .

At node � , PSS’ locally greedy selection is the wrong choice: given the proof
sets of � ’s children, � 
�� � � ���1��� � � 	���� � and � 
�� � ���1�1���� ��� � , PSS selects
the smaller set ��� ��� � as the minimal proof set for � . Because of this choice, the
proof set of � becomes � 
�� � � � � ��� 
�� � � � � � � 
�� � � � � � � � ��	 ��� ��� ��� � , which
is almost twice as large as the optimum.

Example 4 The ratio between the real optimum and the set computed by PSS can
be made arbitrarily large by repeating a similar construction. In Figure 4, the DAG
of Figure 3 has been extended to the top and right by nodes �	�����	� . � � � 	���� �
is still a smallest proof set for node � . Applying the same argument as above for
nodes ��
��
���
 � , it can be seen that � � � 	���� � is also a smallest proof set for
node � . However, as in Example 3 PSS computes a proof set of size five for node
� , and therefore selects the right branch at node � , with a four-element proof set
��� ���$������� � . The proof set backed up to the root contains all nine leaf nodes,
whereas the smallest set has only three nodes. Repeating this construction � times
yields a DAG for which PSS computes a proof set of size ����� � " � containing all
leaf nodes, while the size of the smallest proof set is 3.
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Figure 4: Example 4: extending Example 3

When computing proof sets incrementally, it is possible to take the proof sets
of other siblings into account for the minimum selection. Section 5.2 discusses
such a variation of the algorithm, which tries to improve the likelihood of selecting
a set that works together well with sets from other siblings.

3 Algorithmic Aspects of Proof-Set Search

This section describes some algorithmic aspects of proof-set search, especially in
areas where it differs from proof-number search, such as the selection of a most-
promising node, different resource requirements and the representation of sets of
nodes. It also discusses the problem of multiple updates of the same node. This
problem already exists in PNS, but is more severe for PSS since the update cost per
node is larger.

3.1 Selecting a Most-Promising Node

Selecting a most-promising node in proof-set search is extremely simple. Since
PSS represents proof and disproof sets directly, it is not necessary to traverse the
DAG as in PNS. Theorem 1 guarantees that the intersection of proof and disproof
sets of the root is nonempty, and any node in the intersection is a suitable most-
promising node.
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3.2 Ancestor Updating Algorithm

This subsection discusses some problems of value propagation in DAG’s. It ap-
plies to proof-number search as well as PSS. An ancestor updating algorithm must
update all children of a node before the node itself can be computed. In a tree, a
simple bottom-up computation suffices. On the other extreme, in a directed cyclic
graph (DCG) a ‘right’ ordering of nodes does not exist because of cyclic depen-
dencies. Special methods have been developed for proof-number search in DCG’s
[2], but it is unclear how they relate to PSS. This is a topic for future research, see
the discussion in Section 6.1.

In a DAG, the right order of updates can be assured by a topological sorting
of nodes. However, dynamically maintaining such a sorted order may be expen-
sive, and in practice it may be preferable to accept multiple updates of some nodes
instead.

The simplest updating algorithm for DAG’s, modeled after that for trees, starts
with the just developed node mpn, then adds its predecessors to a queue [6]. For
node sets, such an algorithm can be written as follows:

UpdateAncestorSets(mpn)
{ ListOf<Node> updateQ = [mpn]; // start with just expanded mpn

while (updateQ.NonEmpty())
{

node = updateQ.Pop(); // extract first node from queue
NodeSet oldPS = node->PS(), oldDS = node->DS();
node->SetProofAndDisproofSets(); // backup from children
if ((oldPS == node->PS()) && (oldDS == node->DS()))
{} // unchanged, no need to propagate
else // update parents

updateQ.Union(node->Parents());
// append new parents to the end of the queue

}
} // UpdateAncestorSets

In the general case, this method does not guarantee a perfect order of updates.
Some nodes might be updated more than once, as the following example shows.

Example 5 In the DAG of Figure 5, there is a direct move from � 
 � , but there is
also a longer path � 
 � 
 � 
 � between the same nodes. Assume that parents
of a node are added to the queue in left-to-right order. Then after updating � , �
is appended to the queue before � , so � will be updated first. However, this is a
useless update, since � is also an ancestor of � via

�
. After updating � and

�
,

� is re-added to the queue and updated once more.
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Figure 5: Queue update algorithm causes multiple updates of the same node

As the example shows, the queue backup algorithm can cause multiple updates
of nodes in a DAG, which slows down the computation. There are two choices:
either accept the inefficiency caused by multiple updates of the same node, or keep
the nodes sorted in a priority queue, using a topological sorting of the DAG. This
can be accomplished by an algorithm such as Topological Order in [5, p.137],
which enumerates nodes from the root downwards. We have not yet implemented
such an ordering method. It is unclear whether an efficient incremental version of
the algorithm exists, which can update the ordering after each node expansion. The
problem is at least as hard as cycle detection in directed graphs, since computing
an ordering is possible exactly for cycle-free graphs, and the algorithm must be
able to complain if no ordering is possible because of a cycle.

3.2.1 A Sufficient Condition for Optimality of the Queue Backup Algorithm

The ancestor relation defines a partial ordering of the nodes in the DAG. If this
partial order has a special structure, the optimality of the queue backup algorithm is
assured. A rank function � [8, p.99] on a partially ordered set is a function mapping
elements to integers such that ��� � ��� ��� � ��" � whenever � covers � (immediately
follows � ) in the partial order. In our case, that means that �����&� � � � ����"�� for
all children � of a node � . For example, for all the DAG’s in Figures 1 - 4 a rank
function exists, while for the DAG in Figure 5 there is none.

Lemma 1 Consider the partially ordered set � ��	���� ���&� given by the nodes in
a DAG 	 and the ancestor relation � ��� on 	 . If a rank function � exists for
� � 	�� � ���&� , then the queue backup algorithm is optimal: it computes each node
value at most once.

Proof of Lemma 1: The queue backup algorithm processes nodes in order of
their rank: if � is inserted into the queue before � , then ��� � ��� � � � � . Actually, the
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following stronger statement will be proven: At each stage of the algorithm, the
ranks of nodes in the queue are in monotonically decreasing order and assume at
most two distinct values � and � 
 � . In other words, if the queue � ��� � � ��������� �  ��
contains � �(� elements, then there exists � , � � � ��� , such that ��� � �3� � � � �#���
for � � �
� � and � � ���3��� ��� ����� 
0� for � " � � � � � . It is easy to see that this
property is an invariant maintained by the algorithm: Initially, the queue contains
only a single element. Removing the element �#� of rank ��� ����� from the head of the
queue maintains the invariant. The only nodes appended to the end of the queue by
the algorithm are parents of ��� , which all have rank ��� ��� � 
!� by definition of � .

Examples of games for which a rank function exists are all those where a move
adds exactly one stone to the game state and does not remove anything, such as
Othello (except for forced pass moves), connect-4, qubic, gomoku or Tic-Tac-Toe.
The number of stones on the board is a rank function for positions in such games. In
contrast, games with loops such as chess, shogi or Go do not have a rank function,
unless the whole move history is taken into account for defining a position.

3.2.2 Comparing the Ancestor Updating Algorithms of PNS and PSS

Both PNS and PSS can stop propagating values to ancestors as soon as a node’s
value does not change. However, updates in PSS are certain to propagate all the
way to the root, since the root’s proof and disproof sets contain the just expanded
mpn, which is no longer a leaf node. Usually, PSS will have to update more ances-
tors than PNS, since it distinguishes between sets of the same size with different
elements. However, because of transpositions, the opposite case can also happen.
If a node which is already contained in a proof set is re-added along a new path,
the proof number increases but the proof set remains unchanged.

4 Truncated Node Sets for Proof-Set Search

This section describes a truncated node set data type with bounded memory re-
quirements per set, and uses it in the algorithm ����� ��� � , PSS with (P,D)-truncated
node sets. We prove theorems that characterize both PNS and PSS as extreme cases
of ���	����� � .

Set union and assignment operations on large node sets are expensive, both in
terms of memory and computation time. The new data structure of a K-truncated
node set provides a compromise between the two extremes of using a number and
using a node set of unbounded size. A truncated node set stores at most � nodes
explicitly. In addition, it stores an upper bound on the overall set size, in the same
sense that proof numbers represent an upper bound on the size of proof sets. In this
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sense, proof numbers can be regarded as 0-truncated node sets, which store only a
bound but no elements.

Definition 1 Let K be a nonnegative integer, and let set-min be a function comput-
ing the minimum of two sets based on a total order of nodes. A � -truncated node
set 
 is a pair � � � � � 
��4������� ����� 
���� , where �	� � � 
�� is a set of nodes of cardinality
at most � and ����� ����� 
�� is a nonnegative integer. In addition, a node set has the
following properties:

� ����� ����� 
�� � � � �
�	� � � 
�� � � ����� ����� 
��

� ����� ����� 
���� � � �
�	� � � 
�� � � �

Definition 2 The operations of minimum selection and set union for truncated
node sets are defined as follows:

� ����� ������� � �&� ������� ������� ��"	����� �������&� 
 � � ��� ��� � � � ��� ���&� �

� � ���-��� � �&�#� � , where x is the smallest � -element subset of �	� � ��� � � �	� � ���&�
according to set-min.

� � � ��� � ���&�#��� � ����� ������� � � ����� �������&� � � ����� ������� �-������� ����� �&��� 
�� � 

� � ��� �	� � ��� �&� � � � ���&�5�#� � ���-��� � �

In other words:

� Minimum selection: If the bounds of two sets are different, the set with the
smaller bound is the minimum. Otherwise, the explicitly represented parts of
the sets are compared as if they were unbounded sets.

� Set union: The truncated set union computes the union of the explicitly repre-
sented sets, and stores the first � elements according to some total ordering
of nodes, plus the best-possible bound for the size of the union.

� Initialization by a single element: A truncated node set 
 is initialized to
store a single node � as follows: 
 � � � � � ����� if � � � , 
$�� ��� ����� if
� �(� .

Example 6 Let � �
	 , let nodes be represented by letters ordered alphabetically,
let 
 � � � � ��� ��� ��� � � ������(��� � ��� , 
 % � � �1��� ��� � � ��� ��(� ����� � ��� . For
each truncated set, � elements are given explicitly, and the subscript represents
the bound on the set size. 
 � represents a set of at most 16 elements, including
the eight listed. The truncated set union 
 � � 
 % ��� � � � � � � � � � ��� � � ��� � %�� is
computed by truncating � ��� � 
 ��� � � ��� � 
 % � � � � � � � � � � � � ��� � � ��� �� � ����� �
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to the smallest � � 	 elements. The bound on the set union size is computed
by adding the bounds, then subtracting the double-counted elements in � ��� � 
 ��� �
�	� � � 
�%&� , � � "���� 
�� � �  .

As before, infinite size sets ���	� are added along with rules for computing
minima and unions involving such sets.

4.1 Some Properties of Truncated Node Sets

The next lemma formalizes the intuitively clear fact that larger truncation thresh-
olds result in tighter bounds for set unions.

Lemma 2 Given two integers � � � , and sets of nodes 
 �-����� 
 � , compute both
the � 
 truncated and the � 
 truncated union of 
 � � 
 % ������� � 
 � , using the
truncated set method with the same node ordering and the same sequence of two-
set union operations. Then the bound on the � 
 truncated union is smaller-or-
equal than that on the � 
 truncated union. Furthermore, the explicitly represented
set of the � 
 truncated union is a subset of the explicitly represented set of the
� 
 truncated union.

The proof is straightforward from the definition of truncated set union and is
omitted here to save space. It is worth noting that since truncating sets loses in-
formation, some properties of the usual set union operations are lost. For example,
the absorption law � � � � � does no longer hold, since two sets that look identical
may contain different nonrepresented nodes.

Example 7 In the extreme case of 0-truncated sets, computing the truncated set
union is equivalent to adding the bounds for both sets, as in � ����" ������� ��� �	� .

Example 8 Let �$� � � � � % � � � � � ��� be 2-truncated sets. Then it would be
wrong to set ��� � � % � � , since the two sets might contain up to three different
elements. The correct result is � � � � % � � � � � � � � ��
 %�� � � � � ��� .

4.2 Proof-Set Search with Truncated Node Sets

Given two integers � and � , the algorithm proof-set search with (P,D)-truncated
node sets, ��������� � , is obtained from standard PSS by replacing all proof sets with
� -truncated node sets, and all disproof sets with � -truncated node sets.
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4.2.1 Selecting a Most-Promising Node

Selection of a most-promising node in PSS relies on Theorem 1 of Section 2.2,
which guarantees that for each unproven node � , � 
�� � � ��� ��� 
�� � � ������ 
 . With
truncated node sets, a most-promising node may not always be found immediately,
since all the elements in the intersection might have been cut off by truncation.
The algorithm for selecting a most-promising node with truncated node sets is an
intermediate form of the respective algorithms in PNS and PSS.

SelectMPN() // find most-promising node with truncated node sets
{

node = root; mpn = NIL;
while (IsInteriorNode(node))
{

// CommonNode(a,b) returns NIL if no common node
// is found in rep(a) and rep(b).
mpn = CommonNode(pset(node), dset(node));
if (mpn != NIL) // found a node in intersection, done

return mpn;
SetType t = ’disproof’ if ’node’ is AND node,

’proof’ if ’node’ is OR node;
node = child with same set of type t as node;

}
return node; // reached a leaf node, done.

} // SelectMPN

4.2.2 Characterizing PSS and PNS as Special Cases of ����� ��� �
Theorem 3 ������� � � is the same algorithm as standard PSS.

Theorem 4 ����� � � � is the same algorithm as proof-number search.

The proofs follow immediately from the facts that an � -truncated node set is
an ordinary untruncated node set and a � -truncated node set is equivalent to a proof
number. Two other special cases are interesting, and may be appropriate parameter
choices if search behavior is highly biased towards only proofs or only disproofs:
������� � � combines proof sets with disproof numbers, while ����� � � � uses proof
numbers together with disproof sets.

A nice property of ��������� � is that if � � � and � � � , then the required
memory remains bounded by a constant factor of what PNS would use on the same
DAG.
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4.2.3 Dominance Theorem of PSS with Truncated Node Sets

Theorem 5 Let 	 be a DAG and let � ��� and � �(� be integers. Then at each
node � � 	 , the size bounds for proof and disproof sets computed by ��������� � are
smaller-or-equal to the proof and disproof numbers computed by PNS.

����� �����.� 
�� � � ����� � � ��� ���
����� �����3� 
�� � � ����� � � ��� ���

The proof is by induction: the theorem holds for single nodes, and remains true
when taking truncated set unions or selecting minima in interior nodes.

1. The theorem holds for all proven, disproven and unproven leaf nodes by
definition of ���	� ��� � and PNS.

2. Assume ����� �����.� 
�� � � � � ��� � � ��� � � � for all children � � of node � .

3. Set union: By Definition 2,

����� �����.� 
�� � � ������� ����� �����.� 
�� � � ��� � � ����� �1� 
�� � � �� � �
�	����� �����.� 
�� � � ��������"(������" ����� �����.� 
�� � � �� ���

� � ��� ������" ������"$� ��� �� ���!� ��� ���&�

4. Minimum selection: By definition,

� ��� ������� � ���,� ��� � � �&�������5� � ��� �  ��� and

����� �����.� 
�� � � ��������� � ��� ����� �����.� 
�� � � � � � �&�������5������� �����.� 
�� � � �  �����&�
Assume the minimal proof number is achieved in node � � . Then

� ��� ����� � ��� � � ���	����� �����.� 
�� � � � � �
�	� � ��� ����� �����.� 
�� � � ��� � �&�������5������� �����.� 
�� � � �� ������-������� �����.� 
�� � � �����4�

5. The proof for disproof sets is the same as for proof sets.

Theorem 5 generalizes Theorem 2 of Section 2.3, which dealt with the extreme
case ����� � � � . As in Theorem 2, the dominance holds only when comparing the
computation of the algorithms on the same DAG 	 . It does not hold, and is not
even meaningful, for the different DAG’s generated by using ��������� � and PNS
respectively to generate the DAG.
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5 Using PSS with a Heuristic Leaf Evaluation Function

In analogy to the refinement of PNS described in Section 1.1.1, PSS can utilize
a heuristic node initialization function � for new frontier nodes. For simplicity,
we will use the same function symbol � for both the proof and the disproof case.
In practice, two different initialization functions will be used, since proofs and
disproofs are opposite goals.

For a node set 
�� � ������������� �� �� , define the heuristic weight by � � 
��0�� �-� � � � , and set � � � � � � � � . In PSS, modify the minimum selection among
sets as follows: set-min � 
 ��� 
 % ��� 
 � if � � 
 ��� � � � 
 % � . If � � 
 ����� �-� 
 % � , break the
tie according to a secondary criterion such as lexicographical ordering. Combining
heuristic initialization with truncated node sets is also relatively straightforward
and will be described in Section 5.1.

Theorem 6 Let 	 be a DAG, and let a positive heuristic leaf node initialization
function � be defined for each game position represented by a node in 	 . Further-
more, extend � to sets of nodes by � � 
�� � �

����� � � ��� . Then for each unproven
node � � 	 , the evaluation of the proof (disproof) sets computed by PSS is less-or-
equal the proof (disproof) number of � computed by PNS with the same leaf node
initialization function � .

� �.� 
�� � � ����� � � ��� ���
�-�3� 
�� � � ����� �0� ��� ���

Proof: by induction.

1. The theorem holds for all leaf nodes � since � 
�� � � �����(� 
�� � � ����� � � � and
�-�.� 
�� � � ������� � �3� 
�� � � ����� � � � �����!� ��� ��� ��� ��� ��� .

2. Let � be an unproven AND node with (unproven) children � �#����������� �� � . As-
sume that the induction hypothesis holds for all children � � , �-�.� 
�� � � � � �����
� ��� � � � .

� �.� 
�� � � ������� � �.� 
�� � � �������1� 
�� � � � % � � ����� �!� 
�� � � �� ���
� �-�.� 
�� � � � � ����" � �.� 
�� � � ��%�����"������&" � �.� 
�� � � �  � �
� � ��� ������" � ��� � % ��"(������"$� ��� �� ��� � ��� ���&�

3. Let � be an OR node with children � � � ��������� �  � , and again assume the
induction hypothesis holds for the children.

� �.� 
�� � � �������('*),+-��� �,� 
�� � � �������&� � �.� 
�� � � � % � �&�������5���-�.� 
�� � � �� ������
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�0'1)2+-�.� ��� �����&� � ��� � % �&���������/� ��� �� ������ � ��� ���&�
4. The claim for disproof sets is proved by swapping the AND with the OR

case in steps 2 and 3.

Setting � � ������� for all � results in another proof of Theorem 2 in Section 2.3,
since for every set 
 , � � 
���� �

����� � �
�


�
.

5.1 Combining Truncated Node Sets with Heuristic Leaf Evaluation
Functions

The two generalizations of PSS by truncated node sets and heuristic leaf initializa-
tion can be combined by reinterpreting the bound on the set size as a bound on the
set evaluation: The bound of a union of two sets is then defined by ����� ������� � �&���
����� ������� ��"	����� �������&� 
 ���

�
� �-� � � , � � � � � ��� � � � � � ���&� .

Example 9 Given the following nodes, with their heuristic evaluation written as
a subscript: � �	� � � � �������&� � ����� � � � � � ��� . Consider a 4-truncated node set repre-
sentation, with the subscript of the whole set showing the evaluation bound for the
whole set. Examples of exactly representable sets are 
 ��� � �	� � � � � � �����
� ������� �	� � � � � � � % and 
 % � � �	� � � ��� � � � � � � � �	� ��� � ����� � � � ��� . Taking
the union leads to set truncation, 
 � � 
�% � � � � ��� �	� � � � � ��� � � � ��� . Different
sets may share the same truncated set but have different bounds. For example,

 � � � � � ����� ����� � ������� � � � ����� � �	� � � � ����� � � � � � .

The following lemma and theorem are easy generalizations of Lemma 2 and
Theorem 5 respectively. Proofs are omitted for lack of space.

Lemma 3 Let � � � � � be integers, let 
 � be (untruncated) node sets, and
let � be a heuristic node evaluation function. Compute the � -truncated set union
�
	 and the � -truncated set union �
� using a set ordering based on � , the same
secondary sorting criterion, and the same sequence of two-set union operations.
Then ����� ��������	 � �	����� ��������� � .
Theorem 7 Let � be an integer, let � be a heuristic node evaluation function,
and let 	 be a DAG. For each node � � 	 , compute proof and disproof sets
using �����	 � 	 , and compute proof and disproof numbers using PNS with node
initialization by � . Then for each unproven node � in 	 ,

����� �����.� 
�� � � ����� � � ��� ���
����� �����3� 
�� � � ����� �0� ��� ���&�
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5.2 Favoring Nodes From a Given Set

Assume a most-promising OR node � is expanded by PSS, and that before the ex-
pansion, the proof set of the root already contains other nodes ��� �����&��������� �  �� .
When computing the new minimal proof sets after expanding � , it is probably bet-
ter to choose nodes which are already contained in � , since they will not increase
the size of sets further up in the DAG. The node evaluation can be modified to dis-
count such nodes by a factor � , � ��� � � : �

� � � � �����-� � � if � � ����� � � � � � �-� � �
if � �� � .

A problem with this approach is that the evaluation of node sets becomes
context-dependent. Also, care should be taken to always prefer a proven node �
with � � � ���(� over an unproven but completely discounted node � with �-� � � �� �
but �

� � � �-�(� .

Example 10 In the DAG on the left side of Figure 6, node � is the only most-
promising node and is expanded next. The figure on the right shows the situation
at the time of recomputing the proof set of � after the expansion. (Proof sets of
node � and below are not affected by expanding � .)

Figure 6: Discounting existing nodes

At node � , standard PSS would select the small proof set � � � as its minimal
proof set. However, the modified algorithm would discount the values of

�
, 	 and

� , since they are contained in the proof set of the root � , and therefore select
� over � . This way, the proof set of � shrinks because of the expansion of � ,
� 
�� � ��� ��� � � ��	���� � .

6 Future Work and Summary

Future work on PSS includes extending it to cyclic game graphs and testing it in a
variety of applications.
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6.1 PSS for Directed Cyclic Graphs (DCG)

Directed cyclic graphs, or DCG’s, cause problems for proof-based search proce-
dures because of cyclical dependencies, often called graph history interaction in
this context. Breuker et al. develop one solution to this problem with their base-
twin algorithm [2].

It is presently unknown whether PSS is well-defined and how it works on gen-
eral DCG’s. It seems necessary to adapt the update and propagation rules, since
now the same node can appear both as leaf and as interior node in the DCG. A
promising sign is that PSS has no trouble solving the following example, taken
from Figure 5 of [7]:

Figure 7: Directed cyclic graph with cycle � 
 � 
 �

Example 11 �
�
is a transposition of � , leading to a cycle � 
 � 
 � . Let’s treat

the graph as a DAG and update proof sets, assuming nodes are ordered alphabeti-
cally for minimum selection. Initially, � 
�� � � � � ��� � � � � � � � � , � 
�� � � � � � � � � ,
� 
�� � � � �1� � � � , � 
�� � � � � � '*),+-�.� 
�� � � � �4� � 
�� � ��� ��� � � � � , � 
�� � ����� �� � � ,
� 
�� � � � �!� � 
�� � � � � � � 
�� � � ��� � � � � , � 
�� � ��� � � � � � . After proving � ,
� 
�� � ���1�1� 
 , � 
�� � � � � � '*),+-�.� 
�� � � � �4� � 
�� � ��� ��� ��
 . Now � is proved, and
can be propagated through the DCG, leading successively to proofs of

�
, � ,

�

and � .

6.2 Applications of PSS

Applications should lead to a better understanding of PSS in both theory and prac-
tice. A first test on Tic-Tac-Toe resulted in PSS growing a 10% smaller DAG than
PNS, with 1114 nodes against PNS’ 1237 to disprove that Tic-Tac-Toe is a win for
the first player. However, Tic-Tac-Toe is hardly a challenging test case, and large
gains cannot be expected here.
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The original motivation to develop PSS came from a report [4] that some tsume
shogi (shogi mating) problems are hard for proof-number based algorithms because
of transpositions. In first experiments with PSS in this domain, the method proved
viable on moderately large DAG’s with up to several hundred thousand nodes when
using truncated node sets with ��� � � � � . Preliminary results seem to indicate
a correlation between the frequency of transpositions and the performance of PSS.
However, a proper study remains as future work.

Another promising application area are subproblems in the game of Go, such
as life and death puzzles or tactical capturing problems. Both shogi and Go provide
a rich and very challenging set of test cases.

6.3 More Research Topics

Investigate the performance of the queue backup method What is the average
and worst-case performance of the queue backup method on different types
of DAG’s? Is it sufficient for the DAG’s encountered in practice? Are there
DAG’s for which the performance is unacceptably bad?

Find necessary conditions for optimality of queue backup Lemma 1 in Section
3.2.1 proves that the existence of a rank function for the ancestor relation is
sufficient to ensure the optimality of the queue backup algorithm. Are there
other, more general sufficient conditions? What are necessary conditions
for optimality? Such a criterion might be based on characterizing forbidden
subgraphs, such as the one in Figure 5.

Efficient data structures for large node sets A straightforward implementation of
node sets by sorted lists is easy to program, but slow for large sets. Are there
applications where it is essential to deal with large sets, and if so, are there
more efficient data structures?

Choice of truncation values Which values of � and � provide a good tradeoff
between memory and accuracy for ����� ��� � ? How are the values related to
the problem type? Is it beneficial to dynamically adapt � and � during the
search, or use different values in different regions of the DAG?

Multi-level schemes Are schemes such as � � % -search [3] effective for PSS?

6.4 Summary

Proof-set search, or PSS, is a new search method which addresses the problems
caused by overestimating the size of the minimal proof set in DAG’s. Like PNS,
PSS uses the simple children-to-parents propagation scheme for DAG’s, but unlike
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PNS, it backs up proof sets instead of proof numbers. The sets computed by PSS
provide better approximations than is possible with only proof numbers on the
same DAG. However, more memory and more computation is needed to store and
manipulate node sets instead of numbers. The trade-off between the advantages of
a more focused search and the disadvantages of using more memory per node and a
more expensive backup procedure need further investigation. Since overestimating
proof numbers in a DAG can lead search into a completely wrong direction for a
long time, any improvement in the node expansion strategy can potentially achieve
large savings in search efficiency, especially on hard problems.
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