
Investigating Probabilistic Opponent-Model Search∗

H.H.L.M. Donkers J.W.H.M. Uiterwijk H.J. van den Herik

Institute for Knowledge and Agent Technology (IKAT)
Department of Computer Science, Universiteit Maastricht

email: {donkers,uiterwijk,herik}@cs.unimaas.nl

An often-made assumption in computer game playing is that the opponent plays
as well as we play. By this is meant that the opponent uses all information that
we use, plays as rational as we do, and uses heuristics that are as effective as ours.
In a game-theoretic setting this might be a correct assumption, but playing games
like chess does not happen in a game-theoretic setting. Although chess is basically
a zero-sum game with perfect information, in practice the sheer size of the game
tree makes it impossible to compute exact game values. Therefore, in computer
game playing an evaluation function is used that computes an approximation of the
true game value at a given node in the game tree. These approximations are then
treated as real game values and the game tree is solved using some variant of the
minimax algorithm, a procedure that does not guarantee the highest probability
of winning the game.

One might do better if some knowledge about the opponent is used during the
game-tree search. In incomplete-information games like poker, opponent modelling
is an important part of the game, but in perfect-information games like chess,
opponent modelling is not used often. One approach of using an opponent model
in game-tree search is opponent-model search [1, 2]. In this approach, it is assumed
that the opponent uses a given evaluation function. The OM-search algorithm then
exploits weak spots in the evaluation function.

In this contribution we propose an extension of opponent-model search, called
probabilistic opponent-model search (PrOM search) that incorporates uncertainty
in the model of the opponent’s evaluation function. This approach is not only closer
to the human approach, it also creates opportunities for learning an opponent
model during an actual game.

PrOM search uses multiple evaluation functions together with a probability
distribution to model the player’s uncertainty on the opponent. To enable this,
three assumptions are made. The first assumption is knowledge of n well-defined
opponent types ω0 . . . ωn−1, each opponent type ωi having a separate fixed and
well-known evaluation function Vωi

. One opponent type (ω0) is using the same
evaluation function as max uses (Vω0 ≡ V0). Second, it is assumed that max has
subjective probabilities Pr(ωi) on the opponent being of one of these types, such
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that
∑

i Pr(ωi) = 1. The third assumption is that min is using a mixed strategy
consisting of n minimax strategies, one for every opponent type. From these
strategies min picks one randomly at every move, according to the probabilities
Pr(ωi).

The probabilities on opponent types lead to probabilities on moves at the
min nodes in the game tree. Assume that at a min node P there is a set of m
available moves M(P ) = {P1, . . . , Pm}. The opponent plays minimax with one of
the opponent types and hence will select a move with a minimal value for that
type. When more than one move have the same minimal value, one of the moves
is selected at random. The probability that the opponent selects a certain move
is thus given by:

Pr(Pj) =
∑

i Pr(ωi) · Wi(Pj), where

Wi(Pj) =

{
0, if vωi

(Pj) > mink vωi
(Pk)

1/card{k | vωi
(Pk) = vωi

(Pj)}, if vωi
(Pj) = mink vωi

(Pk)

vωi
(P ) =


maxj vωi(Pj) (max node)
minj vωi(Pj) (min node)
Vωi

(P ) (leaf node)

Then PrOM search is given by:

v0(P ) =


maxj v0(Pj) (max node)∑

j v0(Pj) · Pr(Pj) (min node)
V0(P ) (leaf node)

To investigate the behaviour of PrOM search in comparison with minimax (α-β
search) and OM search we performed a series of experiments on random game
trees. The experiments show that the number of evaluations in PrOM search is
higher than the number of evaluations needed for α-β search or OM search. But
when it is taken into account that performing PrOM search with three opponent
types includes one α-β search (for ω0) and two OM searches (for ω1, and ω2), then
the number of evaluations needed for PrOM search is not unexpectedly high.
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