
Learning Opponent-Type Probabilities

for PrOM Search

H.H.L.M. Donkers J.W.H.M. Uiterwijk H.J. van den Herik

Department of Computer Science,
Institute for Knowledge and Agent Technology,

Universiteit Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands.
email: fdonkers,uiterwijk,herikg@cs.unimaas.nl

Abstract

Opponent-type probabilities play an important role in probabilistic opponent-

model search (PrOM search): they constitute an approximation of the real

opponent. The research question is: can we learn opponent-type probabili-

ties? When the opponent uses a mixed strategy of known opponent types,

it appears possible to learn opponent-type probabilities o�-line from game

records. Next to o�-line learning, we brie
y describe two approaches for

on-line learning of opponent-type probabilities. The results described in this

paper suggest that PrOM search may become a strong alternative for plain

opponent-model search.

1 Introduction

Probabilistic Opponent-Model search [4] is an extension of Opponent-Model search

(OM search). In OM search [2, 7, 8], the opponent is assumed to use a weaker

evaluation function than the player's own evaluation function. OM search tries

to exploit the opponent's weaknesses. In fact, the opponent is modelled as pre-

cisely as possible by his evaluation function. PrOM search tries to exploit the

weaknesses of the opponent too, but uses a more sophisticated model. In PrOM

search the opponent is modelled by a mixed strategy of N known opponent types

!i (i = 0; 1; : : : ; N � 1), each !i is represented separately by an evaluation func-

tion. The mixture of strategies is typi�ed by a probability distribution P(!i) over

the opponent types. The opponent is assumed to pick at every move one of the

opponent types !i according to probability P(!i), and to act like this opponent

for the current move.

In brief, PrOM search works as follows: at max nodes, the child node with the

highest value is selected, like in Minimax. At min nodes, �rst, the value of the

min node for every opponent type !i is established separately (using any Minimax-

equivalent algorithm). Next, using the probabilities P(!i), the expected value of

the min node is computed. At leaf nodes, the player's evaluation function is used.

Figure 1 gives an example search tree in which PrOM search and Minimax are

compared. The squares denote max nodes and the circles min nodes. The values

inside the nodes are standard minimax values. In the example, there are two

opponent types: !0 and !1 with probability 0.3 and 0.7, respectively. To the right



Figure 1: PrOM search and Minimax compared.

of the nodes, the minimax values for these opponent types are given. The values

for !0 are chosen to be equal to the minimax values. The PrOM-search values

are mentioned above the nodes. At the right-hand min node, !0 would select the

right-hand child (v!0 = 6), but !1 would select the left-hand child (v!1 = 8). The

expected value of this min node is equal to 7.4, which is higher than the minimax

value of this node and even higher than the minimax value of the left-hand min

node (7). In passing we remark that !0 and !1 both select the right-hand node

from the left-hand min node. Therefore we see that the distribution for the two

branches is: 0.0 and 1.0. In summary, at the root, PrOM search will select another

move than Minimax does.

The mixed-strategy semantic of PrOM search serves as an approximation of

the real behaviour of the opponent. Although it is possible to approximate the

opponent by a single evaluation function tuned to the opponent's observed be-

haviour, as done by Carmel and Markovitch [3], the resulting plain OM search

can lead to large risks, as pointed out in [5]. This is especially true when the own

evaluation function has a poor quality. The mixed-strategy approach of PrOM

search incorporates an implicit kind of risk avoidance [4].

The individual opponent types (e.g., the evaluation functions) to be used by

PrOM search can be achieved in two ways, either by construction or by learn-

ing. Construction can be based on a model of opponent behaviour or on a set of

mistakes often made. Learning can be done by using previously recorded games

[6, 1]. It is a good idea to use the MAX-player's evaluation function as one of

the opponent types. By convention we will denote this opponent type by !0. The

larger the probability P(!0) is, the less PrOM search will yield results di�erent

from Minimax. When P(!0) = 1, PrOM search is equivalent to Minimax.

In this paper we concentrate on learning of the probability distribution over

a given set of opponent types from the observations of the moves of an unknown

opponent. The research question we wish to answer is: given a set of opponent

types !0 : : : !N�1, what is the best probability distribution over these types to be

used by PrOM search against a given target opponent 
? This research question

is in fact a learning task with two manifestations: o�-line learning and on-line



learning. In o�-line learning, we have available a large set of positions together

with the moves that our target opponent 
 selects. During on-line learning, we

only have the few moves played by 
 so far. In section 2, we focus on experiments

with o�-line learning. Section 3 discusses some possible ways to implement on-line

learning. Finally, in section 4, we provide some conclusions and describe future

research.

2 O�-line learning

The objective of o�-line learning is to �nd a probability distribution such that

PrOM search plays best against a given target opponent 
. The de�nition of

PrOM search strongly suggests that this probability distribution is identical to the

probability distribution that best predicts the behaviour of 
. This assumption

is straightforward, but only real game-playing can prove its correctness. In our

experiments we concentrate on �nding the best predicting probability distribution.

To �nd the best distribution, it is not necessary to perform an extended PrOM

search actually and repeatedly. We use a set-up in which the selection of a move

by the opponent types !0 : : : !N�1 and by the target opponent 
 is simulated by

a simple selection of a number m from a given range 0 : : :M � 1. The opponent

types !i are modelled by a mechanism that selects a number from the range at

random, and 
 is modelled by a probability distribution P(!i) over the opponent

types !i. The learning task now is to estimate the probability distribution P(!i)

from the observed moves produced by the !is and by 
.

The simulations were conducted as follows. At every time step, (1) all opponent

types !i selected a number mi, (2) the target opponent 
 selected one opponent

type !
, according to P(!
) and (3) 
 produced the number, m
, that was

selected by !
. The observed mi's and m
's lead to an estimation P̂(!i) of P(!i)

by counting the number of times that mi agrees with m
 and divide this by the

total number of times that any mj agrees with m
 (if several distinct mj 's agree

with m
 at the same time, they are dealt with separately):

P̂(!i) =
#(mi = m
)P
j #(mj = m
)

(1)

As a measure of the quality of the distribution to be learned, a learning error

� is introduced, being the Euclidian distance between P̂(!i) and P(!i). The range

of � is [0 : : :
p
2]. In the test set-up we abstract from real games and investigate

how much can be learned using only the knowledge given. In the actual games,

more information is available and might be used in another series of experiments

for better learning.

The moves that two opponent types (evaluation functions) in a given position

select are not independent since the game-tree search in
uences the choice and

since there are always some common elements in both evaluation functions that

lead to a comparable (the same) ordering of moves. In the experiments we therefore

compared sets of independently behaving opponent types to dependently behaving

ones. Independent opponent types select a number on the basis of a uniform



probability distribution. The opponent types behaving dependently select the

moves according to the following scheme. The �rst opponent type (!0) uniformly

selects a movem0. Opponent type !i, i > 0, selects a move from the set f(mi�1+k)

mod M j k 2 [�4; 4]g.
In actual positions, the opponent is not likely to use a mixed strategy of op-

ponent types. Probably, the true opponent's evaluation function is not even in

the set f!0 : : : !N�1g. To investigate whether it is possible to learn a probability

distribution o�-line, we tested a situation in which the target opponent picked a

�xed number from the given range, while the opponent types behaved dependently

as described above. Since an exact learning of the probabilities is not at stake, we

used the sample variance as a measure of learning quality.

In the set of experiments, the number of opponent types N varied from 2 to

20. The probability distribution P(!0; !1; : : : ; !N�1) of the opponent types was of

the form (a; b; : : : ; b) (where a varied between 0 and 1, and b = (1� a)=(N � 1)).

The range of available numbers, M , was �xed to 20. The learning time T varied

from 101 to 105 runs. The sample size was 100 everywhere.

2.1 Experimental results

Figure 2 shows the result of the experiments for N = 5. As is clear from the

�gure, increasing the learning time from 102 to 105 decreases the variance of the

learning error, but does not decrease the error. The �gure shows that the learning

Time=105

P(!0)

L
ea
n
in
g
er
ro
r
�

10.80.60.40.20

0.5

0.4

0.3

0.2

0.1

0

Time=102

Dependent Types

L
ea
n
in
g
er
ro
r
�

10.80.60.40.20

0.5

0.4

0.3

0.2

0.1

0

Time=105

P(!0)

L
ea
n
in
g
er
ro
r
�

10.80.60.40.20

0.5

0.4

0.3

0.2

0.1

0

Time=102

Independent Types

L
ea
n
in
g
er
ro
r
�

10.80.60.40.20

0.5

0.4

0.3

0.2

0.1

0

Figure 2: Learning error � as a function of the opponent-type probability P(!0)

for a set of 5 opponent types, with ambiguous events. The learning time is 102

(top) and 105 (bottom).



error becomes larger if P(!0) has a greater distance to 0.2 (equal probability for

all types). This e�ect can be explained by the occurrence of ambiguous events,

i.e., events in which more than one opponent type agree with 
. It is possible to

compute the size of this error easily for the independent case where P(!0) = 1

as follows. The probability for any opponent type other than the selected one,

to agree with 
 is 1=M , so #(mi = m
) is on average T=M for every i > 0,

for i = 0, this number is necessarily equal to T. Substituting this in equation 1

gives
T=M

T+(N�1)�T=M
. This means that P̂(!i) will become 1=(M +N � 1) for i > 0

and M=(M + N � 1) for i = 0. The learning error for M = 20 and N = 5

will consequently be 0.1864, which agrees with the experimental results. (For

P(!0) = 0:2, the learning error is zero.) The only way to remove the learning error

completely is to disregard the ambiguous events since in the case of an ambiguity

any other strategy would give some positive probability to an opponent type other

than !0.

Figures 3 and 4 shows the results for 5 opponent types when the ambiguous

events are disregarded. The y-scale in this �gure is logarithmic to indicate that

the error is approaching zero with increasing learning time. In this case, the

Dependent Types

P(!0)

-L
o
g
(�
)

10.80.60.40.20

8

6

4

2

0

101
102
103
104
105
Time

Independent Types

P(!0)

-L
o
g
(�
)

10.80.60.40.20

8

6

4

2

0

Figure 3: Learning error � for a set of 5 opponent types as a function of the

opponent-type probabilities, without ambiguous events.

P(!0) = 0:4

Dependent Types

Log(Time)

-L
o
g
(�
)

54.543.532.521.51

8

6

4

2

0

P(!0) = 0:4

Independent Types

Log(Time)

-L
o
g
(�
)

54.543.532.521.51

8

6

4

2

0

Figure 4: Learning error � for a set of 5 opponent types as a function of the learning

time, without ambiguous events.



Dependent Types

P(!0)

-L
o
g
(�
)

10.80.60.40.20

10

8

6

4

2

020
15
10
5
4
3
2

#Types

Independent Types

P(!0)

-L
o
g
(�
)

10.80.60.40.20

10

8

6

4

2

0

Figure 5: Learning error � as a function of opponent-type probabilities and the

number of opponent types for T = 105.

probabilities can be learned exactly, although in the case of dependent opponent

types, there appears to be a limit to the precision.

Of course, disregarding these ambiguities decreases the learning speed, and

too many of them would stop the learning. In cases in which too few rounds are

counted, other, less accurate, methods for learning the probabilities must be used.

In the experiments, the fraction of disregarded events with independent opponent

types is constantly 18.6%, in the case of dependent opponent types, the fraction

of disregarded events varies between 48.7% and 53.8%.

Figure 5 shows the results for varying numbers of opponent types. There

appears to be a gap between the cases of two and more than two opponent types.

This gap is larger in the case of dependent types.

!4

!3

!2

!1

!0

Choice

P
ro
b
a
b
il
it
y

2018161412108642

1

0.8

0.6

0.4

0.2

0

Figure 6: Learned probability distribu-

tion over opponent types as a function

of opponent's choice.

101
102
103
104
105Time:

Choice

-L
o
g
(�
)

2018161412108642

10

8

6

4

2

0

Figure 7: Learning error � as a function

of opponent's choice for varying learn-

ing times.



Figures 6 and 7 give the results for the case in which the opponent did not

use a mixed strategy, but used a strategy that was di�erent from any of the

opponent types, e.g., selected a �xed number. From �gure 7 it appears that the

learning results in a stable probability distribution over the opponent types and

that learning takes place with reasonable speed.

3 On-line learning

During a game, the learning of opponent-type probabilities is limited since the

number of observations is low. It can, however, be useful to adapt probabilities

achieved by o�-line learning if the behaviour of the observed opponent is rather

di�erent from the expected behaviour.

On-line learning is performed during a game just after the opponent's move

is observed. Two types of on-line learning are possible: fast and slow. In fast

learning only the best move of every opponent type is used, in slow learning the

search value of all moves is computed for all opponent types.

Fast on-line learning happens as follows: start with the o�-line or prior obtained

probabilities. At every move by the opponent do: for all opponent types detect

whether their best move is equal to the actually selected move. If so, award that

opponent type with a small increase of the probability. If not so, punish the

opponent type. The size of the award or punishment should be not too large

because this type of learning will lead to the (false) supremacy of one of the

opponent types.

Slow on-line learning would be an application of the naive Bayesian learner.

Again start with the o�-line or a priori obtained probabilities. At every move

by the opponent do: for all opponent types compute the search values of all pos-

sible moves. Compute conditional probabilities from these values. Use Bayes'

rule to compute the opponent-type probabilities, given the observed move by the

opponent. Use these a posteriori probabilities to update the opponent-type proba-

bilities. In slow on-line learning, the adaptations of the probabilities should not be

too large, because then it will lead to the (false) supremacy of one of the opponent

types too.

It is evident that slow on-line learning adjusts the probabilities better than the

fast on-line learning (among others because it uses more information).

4 Conclusions and Future Research

From the experiments and from theoretical analysis it appears that the only way

to learn (estimate) the probabilities correctly is to disregard all events in which

more than one opponent type agree with the target opponent. Our experimental

environment shows that under this condition it is possible to learn probabilities

for opponent types e�ectively o�-line, based on stored game records. Dependently

behaving opponent types increase the diÆculty of learning partly because they

increase the number of ambiguous events. When the actual opponent is not acting



like the model that PrOM search assumes, it is still possible to learn a probability

distribution over the set of given opponent types.

Future research. Although the goal of this paper is to show that learning of

opponent-type probabilities is possible, the applicability of the o�-line learning

has to be tested further, especially in a real domain were additional knowledge is

available to speed up learning.

The subject of on-line learning of opponent-type probabilities has not yet been

discussed thoroughly, but the two approaches mentioned seem to allow some learn-

ing during a game. It will however strongly depend on the game characteristics

(such as game length, branching factors, mobility) whether on-line learning is

meaningful.

Together with the learning of opponent-type probabilities, PrOM search can

become a strong alternative to plain Opponent-Model search.

References

[1] Anantharaman, T.S. (1997). Evaluation Tuning for Computer Chess: Linear

Discriminant Methods. ICCA Journal, 20(4), pp. 224{242. ISSN 0920-234X.

[2] Carmel, D. and Markovitch S. (1998). Pruning Algorithms for Multi-Model

Adversary Search. Arti�cial Intelligence, Vol. 99, pp. 325{255. ISSN 0004-

3702.

[3] Carmel, D. and Markovitch S. (1998). How to explore your opponent's strat-

egy (almost) optimally. Proceedings of the Third International Conference on

Multi-Agent Systems, ICMAS'98, pp. 64{71. IEEE Computer Society Press.

[4] Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001).

Probabilistic Opponent-Model Search. Information Sciences, 135(3-4), pp.

123{149. ISSN 0020-0255.

[5] Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001).

Admissibility in Opponent-Model Search. Proceedings BNAIC 2001 (ed. B.

Kr�ose, M. de Rijke, G. Schreiber, and M. van Someren), pp. 373{380. Uni-

versiteit van Amsterdam, Amsterdam, The Netherlands.

[6] F�urnkranz, J. (1996). Machine Learning in Computer Chess. ICCA Journal,

19(3), pp. 147{161. ISSN 0920-234X.

[7] Iida, H., Uiterwijk, J.W.H.M., Herik, H.J. van den, and Herschberg, I.S.

(1993, 1994). Potential Applications of Opponent-Model Search. Part 1: The

Domain of Applicability. ICCA Journal, 16(4), pp. 201{208. Part 2: Risks

and Strategies. ICCA Journal, 17(1), pp. 10{14. ISSN 0920-234X.

[8] Iida, H., Kotani, I., Uiterwijk, J.W.H.M., and Herik, H.J. van den (1997).

Gains and Risks of OM Search. In Advances in Computer Chess 8 (eds. H.J.

van den Herik and J.W.H.M. Uiterwijk), pp. 153{165. Universiteit Maastricht,

Maastricht, The Netherlands. ISBN 90-6216-2347.


