
Go-Moku and Threat-Space Search

L.V. Allis
H.J. van den Herik M.P.H. Huntjens

University of Limburg Vrije Universiteit
P.O. Box 616 De Boelelaan 1081
6200 MD Maastricht, The Netherlands 1081 HV Amsterdam, The Netherlands
{allis,herik}@cs.rulimburg.nl matty@cs.vu.nl

Abstract

Many decades ago, Japanese professional Go-Moku
players stated that Go-Moku (Five-in-a-row on a
horizontally placed 15×15 board) is a won game for
the player to move first. So far, this claim has never
been substantiated by (a tree of) variations or by a
computer program. Meanwhile many variants of
Go-Moku with slightly different rules have been
developed. This paper shows that for two common
variants the game-theoretical value has been esta-
blished.

Moreover, the Go-Moku program Victoria is
described. It uses two new search techniques,
threat-space search and proof-number search. One
of the results is that Victoria is bound to win against
any (optimal) counterplay if it moves first. Further-
more, it achieves good results as a defender against
non-optimally playing opponents. In this contribu-
tion we focus on threat-space search and its advan-
tages compared to conventional search algorithms.

1. Introduction

Japanese professional Go-Moku players have stated
for many decades that the player to move first (i.e.,
Black) has an assured win (Sakata and Ikawa,
1981). Still, up to this contribution, as far as we
know, no proof has been published nor has any Go-
Moku program ever shown to be undefeatable when
playing Black. As a case in point we mention the
game between the Go-Moku 1991 World Champion
program Vertex (Black) and the program Polygon
(White), Vertex maneuvered itself into a position
provably lost for Black (Uiterwijk, 1992a).

The intriguing difference between human strategic
abilities and the performance of the state-of-the-art
computer programs makes Go-Moku an attractive
research domain. The investigations focus on the
discovery of new domain-specific strategic
knowledge and on the development of new search
techniques. Both issues are discussed below
although emphasis is placed on a new search tech-
nique.

The course of this article is as follows. In section 2,
the rules of five Go-Moku variants are briefly

discussed. In section 3, some insight is given into
the way of thinking by human Go-Moku experts, the
"thinking" of the strongest computer programs and
the main differences between them. Section 4 con-
tains a description of threat-space search. The
results of this new search technique are presented in
section 5. The Go-Moku program Victoria is
described in section 6. The main result is given in
section 7: how Victoria solved the common variant
of Go-Moku. Section 8 contains conclusions.

2. The rules of Go-Moku

In Go-Moku, simple rules lead to a highly complex
game, played on the 225 intersections of 15 horizon-
tal and 15 vertical lines. Going from left to right the
vertical lines are lettered from ’a’ to ’o’; going from
the bottom to the top the horizontal lines are num-
bered from 1 to 15. Two players, Black and White,
move in turn by placing a stone of their own color
on an empty intersection, henceforth called a
square. Black starts the game. The player who first
makes a line of five consecutive stones of his color
(horizontally, vertically or diagonally) wins the
game. The stones once placed on the board during
the game never move again nor can they be cap-
tured. If the board is completely filled, and no one
has five-in-a-row, the game is drawn.

Many variants of Go-Moku exist; they all restrict
the players in some sense, mainly reducing the
advantage of Black’s first move. We mention five
variants.

A. In the early days the game was played on a
19×19 board, since Go boards have that size.
This variant is still occasionally played. How-
ever, the larger board size increases Black’s
advantage (Sakata and Ikawa, 1981).

B. An overline is a line of six or more consecutive
stones of the same color. In the variant of Go-
Moku played most often today, an overline does
not win (this restriction applies to both players).
Only a line of exactly five stones is considered
as a winning pattern.

C. Black plays his first move usually at the center
square and his second move diagonally

- 2 -

connected to his first move. In a commonly
played variant it is forbidden to Black to play his
second move in the 5×5 square of which his first
move forms the center. This restriction reduces
Black’s advantage considerably, but not com-
pletely.

D. A professional variant of Go-Moku is Renju.
White is not restricted in any way, e.g., an over-
line wins the game for White. However, Black
is not allowed to make an overline, nor a so-
called three-three or four-four (cf. Sakata and
Ikawa, 1981). If Black makes any of these pat-
terns, he is declared to be the loser. Renju is not
a symmetric game; to play it well requires dif-
ferent strategies for Black and for White. Even
though Black’s advantage is severely reduced, he
still seems to have the upper hand.

E. In an attempt to make the game less unbalanced,
in Renju a choice rule for White has been intro-
duced: Black must play his first move in the
center, White at one of the eight squares con-
nected to Black’s stone; Black’s second move is
unrestricted. Then, White has the choice
between continuing the play with the white
stones, or swapping colors with Black. [When
playing optimally, Black will, if possible at all,
choose his second move such that the game-
theoretical value of the resultant position is
drawn.]

We illustrate our search techniques with the non-
restricted variant of Go-Moku: an overline is
allowed and sufficient to win, for either player. In
section 7, we present the solution of this variant as
well as of variant B. The optimal lines are given in
Appendix A.

3. Expert knowledge

In this section, three types of Go-Moku knowledge
and their applications are discussed. The first type
consists of a number of definitions important for all
players (humans and computers). We apply these
definitions to threat sequences. The second type
contains strategies taken from human Go-Moku
players’ thinking. The third type embodies the
choice-of-move selection process of conventional
Go-Moku programs. Then, we examine to what
extent move-selection approaches by humans and
by computers are different. As a result it transpires
which ability is lacking in conventional Go-Moku
programs.

3.1. Definitions and threat sequences

In Go-Moku, a threat is an important notion; the
main types have descriptive names: the four
(diagram 1a) is defined as a line of five squares, of
which the attacker has occupied any four, with the
fifth square empty; the straight four (diagram 1b) is

a line of six squares, of which the attacker has occu-
pied the four center squares, while the two outer
squares are empty; the three (diagram 1c and 1d) is
either a line of seven squares of which the three
center squares are occupied by the attacker, and the
remaining four squares are empty, or a line of six
squares, with three consecutive squares of the four
center squares occupied by the attacker, and the
remaining three squares empty; the broken three
(diagram 1e) is a line of six squares of which the
attacker has occupied three non-consecutive squares
of the four center squares, while the other three
squares are empty. If a player constructs a four, he
threatens to win at the next move. Therefore, the
threat must be countered immediately. If a straight
four is constructed, the defender is too late, since
there are two squares where the attacker can win on
his next move. With a three, the attacker threatens
to create a straight four on his next move. Thus,
even though the threat has a depth of two moves, it
must be countered immediately. If an extension at
both sides is possible (diagram 1c), then there are
two defensive moves: both directly adjacent to the
attacking stones. If only one extension is possible
then three defensive moves are available (diagram
1d). Moreover, against a broken three, three defen-
sive moves exist (diagram 1e).

●a

●c ●c

●b ●e ●d ●d ●d

●e

●b ●e

Diagram 1: Threats.

To win the game against any opposition a player
needs to create a double threat (either a straight
four, or two separate threats). In most cases, a
threat sequence, i.e., a series of moves in which
each consecutive move contains a threat, is played
before a double threat occurs. A threat sequence
leading to a (winning) double threat is called a win-
ning threat sequence. Each threat in the sequence
forces the defender to play a move countering the
threat. Hence, the defender’s possibilities are lim-
ited.

In diagram 2a a position is shown in which Black
can win through a winning threat sequence

- 3 -

consisting of fours only. Since a four must be coun-
tered immediately, the whole sequence of moves is
forced for White.

16

2 15 4 6 14

1 8 3 7 5 10 9

12 11

13

17

Diagram 2a: A winning threat sequence of fours.

13

3 10 5

1

2 11

4

6 12

8 7

9

Diagram 2b: A winning threat sequence of threes.

In diagram 2b a position is shown in which Black
wins through a winning threat sequence consisting
of threes, occasionally interrupted by a white four.
As mentioned earlier, White has at each turn a lim-
ited choice. During the play, he can create two
fours as is shown in diagram 2b. Still, his loss is
inevitable. We remark that the exact winning threat
sequence by Black is dependent of White’s
responses to the threes. Therefore, in such cases,
preference is given to the notion of winning threat
trees. In practice, for the difference between the
notions sequence and tree, inessential fours by the
defender are disregarded (see 6. below).

3.2. Human expert analysis

During the second and third Computer Olympiad
(Levy and Beal, 1991; Van den Herik and Allis,
1992) we have observed two human expert Go-
Moku players (A. Nosovsky, 5th dan, and N. Alex-
androv, 5th dan). These Russian players are
involved in two of the world’s strongest Go-Moku
playing programs (Vertex and Stone System). While
observing the experts, it became clear that they are
able to find very quickly sections on the board
where a winning threat sequence can be created,
regardless of the number of threes which are part of
the winning sequence. The length of these winning
sequences are typically in the range of 5 to 20 ply.

The way a human expert finds winning sequences
so quickly can be broken down into the following
steps.

1. A section of the board is chosen where the confi-
guration of the stones seems favorable for the
attacking player. It is then decided whether
enough attacking stones collaborate making it
useful to search for a winning sequence. This
decision is based on a "feeling", which comes
from a long experience in judging patterns of
stones (cf. De Groot, 1965).

2. Threats are considered, and especially the threats
related to other attacking stones already on the
board. Defensive moves by the opponent are
mostly disregarded.

3. As soon as a variation is found in which the
attacker can combine his stones to form a double
threat, it is investigated how the defender can
refute the potential winning threat sequence.
Whenever the opponent has more than one
defensive move, examination is started whether
the same threat sequence works in all variations.
Moreover, it is investigated whether the
opponent can insert one or more fours neutraliz-
ing the attack.

4. If only some variations do not lead to a win via
the same threat sequence, examination is started
whether the remaining positions can be won via
other winning sequences.

5. In practical play, a winning threat sequence often
consists of a single variation, independent on the
defensive moves.

6. Notably, the size of the search space is consider-
ably reduced by first searching for one side (the
attacker). Only if a potential winning threat
sequence is found, the impact of defensive
moves is investigated. This approach is sup-
ported by the analyses given in Sakata and Ikawa
(1981). When presenting a winning threat
sequence, they only provide the moves for the
attacker, thus indicating that the sequence works
irrespective of the defensive moves. Possible

- 4 -

fours which the defender can create without
refuting the threat sequence are neglected all
together.

In positions without winning threat sequences, the
moves to be played preferably increase the potential
for creating threats, or, whenever defensive moves
are called for, the moves chosen will reduce the
opponent’s potential for creating threats. The
human evaluation of the potential of a configuration
is based on two aspects: (1) direct calculations of
the possibilities, e.g., if the opponent does not
answer in that section of the board and (2) a so-
called good shape, i.e., configurations of which it is
known that stones collaborate well.

3.3. Computer programs’ strategies

The strongest Go-Moku programs use (variants of)
the α-β search algorithm (Knuth and Moore, 1975).
In each position only a restricted number (normally
10-15) of the best-looking moves are considered.
The selection is based on heuristics. Searching a
variation ends when a win (loss) has been found, or
when a pre-determined depth has been reached; then
a heuristic evaluation is performed. Some programs
also use forward pruning in branches where an
intermediate evaluation leaves little hope for suc-
cess. When threats are involved, the defender has a
limited number of moves; the strongest programs
then search up to a depth of 16 ply. In the opening
phase of the game, all programs use an opening
book.

There are some important differences between pro-
grams. For instance, Polygon (Uiterwijk, 1992b)
searches first for a winning threat tree without using
a heuristic evaluation function. Using transposition
tables Polygon reaches in some variations depths of
20 to 30 ply (or even more). If no winning tree is
found, an n-ply deep search is performed using a
strategic heuristic evaluation function (n is mostly a
small number); it then selects a move. Before the
strategic move is played, it examines whether the
opponent has a winning tree after the move is
played. If so, the move is rejected, and a new move
is generated by the strategic search.

Another instance is the 1991 World Champion Ver-
tex. It does not use transposition tables nor special
search techniques. A standard search depth of 16
ply, a fine-tuned selection of the most-promising 14
moves per position, and an extended opening book
have resulted in a strong program.

3.4. Man vs. machine

Obviously, both humans and programs spend some
time to search for winning threat sequences.
Humans use methods of optimistic search and verif-
ication, programs use conventional tree-search tech-
niques (Newell and Simon, 1972). In the latter case,

superior calculation power tries to make up for the
large amount of extra work and to compensate the
heuristic evaluation function, which is clearly infe-
rior to human evaluation. A challenge for AI
research is investigating how experts can be
outsmarted by clever techniques and not achieving
the human playing strength by heavy searching (cf.
Levinson et al., 1992). The aim could be realized
by formalizing the human’s complicated methods
and then applying the surplus of calculation power.

In diagram 3a we provide an extreme example.
Black has 16 places where he can create a four. In
total, Black has 8!×28 ∼∼ 10,000,000 ways of creat-
ing a series of 8 moves (with 8 forced responses).
When transposition tables are used, still more than
6,000 variations exist. For humans, however, it is
immediately clear that none of the variations leads
to a winning threat sequence. Somehow humans
understand that executing all these threats leads to
nothing.

In diagram 3b, a position similar to diagram 3a is
given. Black now has a winning threat sequence. It
is conceivable that a Go-Moku program only after
long searching finds the winning threat sequence.
Its tree might be polluted by unnecessary threats
carried out in non-relevant sections of the board.

Diagram 3a: A position with many loose threats.

- 5 -

Diagram 3b: A position with real threats.

We conclude that conventional tree-search algo-
rithms do not mimic human experts when searching
for a winning threat sequence. Below we provide a
model attempting to formalize the human search
strategy. This model needs the introduction of
threat-space search.

4. Threat-space search

A winning threat sequence consists of threats.
Therefore we concentrate on the space of all threats.
The size of the space often comprises several mil-
lions of positions. Hence, emphasis is placed on (1)
reducing the size, and (2) searching through the
remaining space as efficiently as possible.

A substantial reduction comes from the determina-
tion of the defensive moves connected to a threat.
From section 2, we know: after a four, one defen-
sive move is possible; after a three, two or three are
possible. If we consider, for instance, after a three
all possible countermoves, the number of variations
rapidly increases. From section 3.2, however, it
appears that human experts mostly find winning
sequences in which the choices by the opponent are
irrelevant. This idea is used to reduce the space.
Instead of choosing between the defensive moves,
we allow the opponent to play all possible counter-
moves at the same time. If we still find a winning
threat sequence, it is sure that the opponent’s moves
are inessential. The drawback might be that in some
positions no winning threat sequence is found, while
still one exists. In section 5 this drawback is treated
and a remedy is given.

In brief, we have reduced the search space to a
space of attacking moves (threats) only, each of
them answered by all directly defensive moves. For
a precise description of threat-space search we
introduce six notions, their definitions follow below.

1. The gain square of a threat is the square played
by the attacker.

2. The cost squares of a threat are the squares
played by the defender, in response to the threat.

3. The rest squares of a threat are the squares con-
taining a threat possibility; the gain square
excepted.

4. Threat A is dependent on threat B, if a rest square
of A is the gain square of B.

5. The dependency tree of a threat A is the tree with
root A and consisting of dependent nodes only,
viz. the children of each node J are the threats
dependent on J.

6. Two dependency trees P and Q are in conflict, if
within dependency tree P a threat A exists and
within dependency tree Q a threat B, in such a
way that (1) the gain square of A is cost square in
B, or (2) vice versa, or (3) a cost square in A is
also cost square in B.

We exemplify the definitions. In diagram 3b, play-
ing e15 creates a four (with gain square e15, cost
square d15, and rest squares a15, b15 and c15).
After the moves e15 and d15, playing i11 creates a
four (with rest squares e15, f14 and g13). Thus the
four with gain square i11 is dependent on the four
with gain square e15, since e15 is rest square within
the threat with gain square i11.

The dependency tree of threat i11 is a tree whose
root is the four with gain square i11; the only child
of the root is the threat with gain square e15. Since
this last threat consists of rest squares which are
already present on the board, it does not depend on
any threats.

A clear example of definition 6 is the threat with
gain square e15 (and cost square d15) and the threat
with gain square d15 (and cost square e15). These
two threats cannot both be executed in one and the
same winning threat sequence. Therefore, these
threats are in conflict. If threats have a large depen-
dency tree, it is a great deal of work to examine
whether the dependency trees are in conflict. How-
ever, the extra work outweighs the work involved in
the normal investigation.

Threat-space search can now be described with the
help of two principles.

1. Threat A being independent of threat B is not
allowed to occur in the search tree of threat B.

2. In the threat-space search tree only threats for
the attacker are included. After a potential win-
ning threat sequence has been found, it is investi-
gated whether the sequence can withstand any
counterattack.

In Table 1, we have shown the threat-space search
tree of the position of diagram 3b.

- 6 -

� ���
Depth Type of threat Gain square Cost squares� ���
1 Four l15 k15
1 Four k15 l15
1 Four e15 d15

2 Four i11 h12
3 Straight Four i8 i7

2 Four h12 i11
1 Four d15 e15
1 Four o12 o11
1 Four o11 o12
1 Four a12 a11
1 Four a11 a12
1 Three i11 i7,i8,i12

2 Four h12 e15
2 Four e15 h12

3 Five d15
1 Three i8 i7,i11,i12
1 Four o5 o4
1 Four o4 o5
1 Four l1 k1
1 Four k1 l1
1 Four e1 d1
1 Four d1 e1
1 Four a5 a4
1 Four a4 a5� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 1: The search tree of diagram 3b.

Each line in table 1 contains the depth, the type of
threat, the gain square and the cost squares. In the
search tree 18 independent threats exist: 16 fours in
the corners of the board and two threes in the range
of i7-i12. For 16 of these threats (15 fours and 1
three) the gain square does not contribute anything
to creating new threats. Hence the 16 nodes are ter-
minals in the threat-space search tree, since the first
principle of threat-space search states that a child in
a search tree must be dependent on its parent. Only
two threats produce a gain square exploitable in
subsequent threats. We discuss them below.

After e15 (with cost square d15), two new fours can
be created, viz. on i11 and h12. The gain square
h12 (with cost square i11) results in no new threats.
After i11 (with cost square h12), a straight four can
be created at i8. Since a straight four guarantees a
win, a potential winning threat sequence is found.

After i11 (with cost squares i7, i8 and i12), two new
fours can be created, viz. at h12 and e15. The gain
square e15 (with cost square h12) leads to the crea-
tion of a five at d15. Thus a second potential win-
ning threat sequence has been found. The total
threat-space search tree consists of 24 nodes only,
with all potential threat sequences found.

In the example of diagram 3b two potential winning
threat sequences have been found in a process
where each subsequent threat is dependent on stones
already on the board: every new gain square ori-
ginated from a previous threat. In some positions,
however, the gain squares of two or three indepen-
dent threats can be combined to create a new threat.
In such cases independent nodes should be linked.

The resultant combination can be the ancestor of
new threats. We note that it is only useful to link
independent nodes when the gain squares poten-
tially combine to a new threat, i.e., they must lie on
a single line, and close to each other for a possible
five-in-a-row.

Diagram 4: A winning gain-square combination.

Diagram 4 shows a position where Black can win
by combining gain squares of independent threats.
In Table 2 we show the initial threat-space search
tree. The tree does not contain straight fours or
fives. This means that no potential winning threat
sequence has been found.

� ���
Depth Type of threat Gain square Cost squares� ���
1 Four h10 h9
1 Four h9 h10
1 Four j10 i9
1 Four i9 j10� ���

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�

Table 2: Initial search tree for diagram 4.

With the four gain squares of Table 2 we can create
six combinations of two gain squares. We remark
that h9 and h10 are both gain squares and lie close
enough on the same line, but their dependency trees
conflict. Therefore, the combination h9-h10 is not
added to the threat-space search tree. For the same
reason, i9-j10 is not added to the search tree. The
combination h9-j10 does not lie on a line. The three
combinations where the gain squares are close
enough on the same line, and whose dependency
trees do not conflict are h10-i9, h10-j10 and h9-i9.
In Table 3 we have shown the three potentially
beneficial combinations. For each combination, we
have, if possible, developed a new search tree, using
the principles of threat-space search. It turns out
that the combination h10-i9 can be used to create a
straight four at f12. The combination of threats
{h10, i9} followed by f12 thus forms a potential

- 7 -

winning threat sequence.

� ���
Depth Type of threat Gain sq. Cost sq.� ���
1 Four h10 h9

2 combination with i9 i9 j10
3 Straight Four f12 e13

2 combination with j10 j10 i9
1 Four h9 h10

2 combination with i9 i9 j10
1 Four j10 i9
1 Four i9 j10� ���

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Table 3: Combinations of threats for diagram 4.

The two examples clearly indicate the working of
threat-space search. We now provide the general
description. From a given position a search tree of
dependent threats is developed. Whenever a branch
ends in a straight four or five it is examined whether
the potential winning sequence can be refuted. If
none of the variations leads to a win for the attacker,
combinations are made between all independent
nodes, with the condition that the gain squares
involved lie on a single line and close to each other.
This process is repeated until a winning threat
sequence has been found, or no new potentially
beneficial combinations can be created. Generaliz-
ing the idea, we state that threat-space search linear-
izes part of the search process.

5. Results of threat-space search

For Go-Moku no standard set of test positions is
available, comparable to the Bratko-Kopec test for
chess (Kopec and Bratko, 1982). We have chosen
12 positions earlier investigated by the program
Polygon (Uiterwijk, 1992b) for testing the effi-
ciency and efficacy of threat-space space. For this
purpose we have developed Victoria Threat-Space
Search, meaning that Victoria TSS does not use any
additional search techniques. Here, two remarks are
in order.

First, in the test positions the defending player has
almost no interrupting threats. Moreover, the attack-
ing player has only a few threats not related to the
area of interest. Obviously, in positions with many
independent threats on both sides the difference
between threat-space search and conventional
search is expected to be more manifestly.

Second, the number of nodes searched by Polygon
are not directly comparable to the number of nodes
searched by Victoria TSS, the reason being (1)
Polygon uses knowledge rules reducing the depth of
search, (2) Polygon uses transposition tables, (3)
Victoria TSS only generates moves locally (in rela-
tion to the gain square of the current parent node);
Polygon generates moves globally (threats at any
section of the board, independent of the parent
node). As a result we mention that on the same
hardware, Victoria TSS searches 5,000 nodes per

second and Polygon 500.

Finally we remark that Polygon has adjustable
knowledge levels. Its 1-ply and 3-ply knowledge
rules are comparable with Victoria TSS’s
knowledge: a five is a 1-ply rule, and the straight
four is an example of a 3-ply rule (Uiterwijk,
1992c). In Table 4 we compare the results on the 12
test positions. The measures are expressed in
number of nodes searched. The Polygon version is
described in Uiterwijk (1992b); we distinguish
between the version using only the 1-ply and 3-ply
rules, and the version using the knowledge rules up
to 7 ply.

� ���
Pos. Poly. 3-ply Poly. 7-ply Vict. TSS� ���

1 433 419 134
2 2863 2367 (n.s.) 976
3 1715 1585 526
4 1810 1797 303
5 5821 888 153
6 7267 4826 643
7 1658 1429 83
8 16811 2875 193
9 4635 518 677

10 6274 6049 (n.s.) 104
11 775 505 (n.s.) 558
12 8294 6776 504� ���

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Table 4: Measuring the efficacy and efficiency.

In three positions (2, 10 and 11) Victoria TSS did
not find a winning line (indicated by n.s., not
solved), the reason being our reduction of the search
space described in section 4. After (n.s.) we provide
the number of nodes necessary to traverse the res-
tricted search space. As an aside, we remark that in
its tournament version Victoria uses a combination
of threat-space search and proof-number search
(Allis et al., 1994). This combination results in
finding the winning line in all three positions men-
tioned. Details are to be found in Allis (1994).

On the efficacy we may conclude that our imple-
mentation of threat-space search now and then
misses a winning line, which has to be compensated
for by starting the proof-number search procedure.
For a discussion on efficiency we confine ourselves
to the nine positions solved by all program versions.
As a main result we note that Victoria TSS has
searched less nodes in all nine positions than
Polygon with the 3-ply knowledge rules. This holds
also true for the comparison with Polygon’s version
with the 7-ply knowledge rules, except for position
9.

The extremes in efficiency are found in position 1,
with Polygon 3-ply searching 3.2 times more nodes,
and in position 8, with Polygon 3-ply searching 87
times more nodes. For the comparison with Polygon
7-ply, the figures range from 0.8 (position 9) to 17.2
(position 7). Considering the number of nodes
searched as a measure of efficiency, the competition

- 8 -

is in favor of Victoria TSS. Moreover, if we take
into account that Victoria TSS searches ten times
faster since it is not hemmed by a burden of
knowledge, we may conclude that threat-space
search is a valuable new search technique.

6. Victoria’s architecture

The implementation of threat-space search, as
described in section 4, has resulted in a module
capable of quickly determining whether a winning
threat sequence exists (averagely 0.1 CPU-seconds
on an IBM RS6000). This module can be used as a
first evaluation function. If the evaluation value
reads a "win for the attacker" then there is a win. If
no winning line has been found by the module, the
proof-number search procedure is started. All this
means that the threat-space search procedure seen as
a heuristic evaluation procedure is admissible (Nils-
son, 1980).

Hence, it is now possible to construct a search tree
from the initial position using the techniques of
threat-space search and proof-number search, which
arrives at the same game-theoretical result as a full-
width game tree would. We define a node to be
internal in the search tree if no winning threat
sequence (tree) can be found for the player to move.
The main problem to be faced is the large branching
factor (averagely over 200), especially when no
threat needs to be answered (Van den Herik, 1983,
p. 253). Then all defensive moves must be investi-
gated in order to guarantee a correct evaluation of
internal nodes

To reduce the branching factor, in positions with
Black to move we have applied the null-move
heuristic (Beal, 1989). Black may only make moves
which, after a null move by White, are followed by
a winning threat sequence. Such moves thus consti-
tute hidden threats. This procedure normally
reduces the number of possible countermoves to a
few dozen.

The selection of this type of hidden threat moves is
rather straightforward and can be done by heuristics.
Victoria assigns points for creating patterns of two
or three stones in a row. The N moves with the larg-
est number of points are examined to see if they
result in a win after a null move by White. After
some testing N=10 proved to be a reasonable
choice.

Since we can be sure that every selected black move
constitutes a threat, the vast majority of White’s
moves can be disregarded. Still, we must make sure
not to reject by accident a white move potentially
playing an important part in his defense. Therefore,
we have created a module deducting from a winning
threat sequence the white moves with any defensive
value. These are (1) all moves in the winning
sequence itself, (2) all moves connected to white

stones on the board, and (3) all moves which come
connected to the cost squares in the winning threat
sequence. The module generally reduces the
number of potential white moves from over 200 to
between 10 and 50. Each of the remaining moves is
investigated on the fact whether it really refutes the
winning sequence (by executing the move, and then
performing a threat-space search). When Black has
more than one possible winning sequence, the
number of defensive white moves usually lowers
further. A position in which all defensive moves are
thus eliminated is a win for Black. If not all defen-
sive moves are eliminated the search is developed
for each defensive white move.

The module described above solves to a large extent
the problem of the huge branching factor. We have
found that only after the first two black moves, and
in some variations after the third and fourth black
move, Black does not threaten to win after a white
null move. In these cases all 200+ moves must be
examined. By doing so we have solved the game of
Go-Moku (see section 7).

7. Results

Although we have described above how the size of
Go-Moku’s game tree can be reduced considerably,
still a tree of several millions of positions remains to
be searched. To accomplish this feat, a number of
practical problems must be overcome:

1. the tree must be split in a few hundred subtrees.

2. the results of each calculation (the solution of a
subtree) has to be stored in a database;

3. the results of all calculations must be merged
into a final tree, containing the solution;

4. the solution in the final tree must be inspected on
consistency and completeness.

We remark that inspection of the solution as men-
tioned under 4 serves two goals: (1) determining the
correctness of the white-move selection module (cf.
section 6), and (2) establishing that no mistake has
been made in merging all hundreds of subtree
results.

The calculations were performed in parallel, on 10
SUN SPARCstations 2 of the Vrije Universiteit in
Amsterdam. Each of the machines was equipped
with 64 or 128 Mbytes of internal memory and a
swap space of over 200 Mbytes. Our processes
could only run overnight. As a result, some
processes not finished at 8 a.m. were killed, and had
to be restarted at 6 p.m. Still, over 1000 CPU-hours
a week were available for solving Go-Moku.

First, the non-restricted variant of Go-Moku was
examined, in which an overline is a winning pattern.
The calculations also served as a testing ground for
the program, and indeed a few programming errors
were discovered and repaired.

- 9 -

Second, variant B (cf. section 2) was examined.
Again a testing period was necessary to investigate
the effects of overlines in the evaluation function
and in the white-move selection module.

Both variants have been solved: in each case a win-
ning tree for Black has been found and stored in a
database. Table 5 shows the statistics of both solv-
ing procedures. Inspection of the solution tree took
approximately 1 CPU day per variant of Go-Moku.
The optimal line starts with a human-understandable
opening (11 plies). In the middle game, Black and
White alternatively create threats, with Black suc-
cessfully increasing his threat potential. After 35
plies it is all over.
� ���

non-restricted variant B� ���
CPU time 1.1 million seconds 1.3 million seconds� ���
pos. investigated 5.3 million 6.3 million� ���
solution-tree size 138,790 153,284� ���
solution-tree depth 35 35� ���

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

��
�
�
�
�
�
�

Table 5: Statistics on solving Go-Moku.

As is well-known, the Computer Olympiads (Levy
and Beal, 1989, 1991; Van den Herik and Allis,
1992) provide an excellent test bed for game-
playing programs. At the fourth Computer Olym-
piad (London, 4-11 August 1992), Victoria entered
the Go-Moku tournament, where the competition is
played according to the rules of variant B.

When playing Black, Victoria won all its games. It
started playing from the database and when out of
moves, it found a winning threat sequence using the
threat-space search module. Victoria also won half
of its games playing White. This result sufficed to
win the gold medal. The games played at the 4th
Olympiad are reproduced in Appendix B.

8. Conclusions

Threat-space search has been developed to model
the way human expert Go-Moku players find win-
ning threat sequences. Earlier, in a modest version,
it has been successfully applied to Qubic (Allis and
Schoo, 1992). Threat-space search finds deep win-
ning lines of play based on threats in averagely 0.1
CPU seconds. The price paid for this success is
small: in some cases where a winning line exists, it
is not found. To overcome this problem proof-
number search is evoked. Threat-space search and
proof-number search are applicable to other games
as well as to the area of theorem proving. Imple-
mented in the tournament program Victoria, they
solved the game of Go-Moku: Victoria always wins,
when playing Black.

Acknowledgements

The investigations were partly supported by the

Foundation for Computer Science Research in The
Netherlands (SION) with financial support from
The Netherlands Organization for Scientific
Research (NWO), file number 612-332-021. The
research has been performed in the framework of
the SYRINX project (SYnthesis of Reliable Infor-
mation using kNowledge of eXperts), a part of a
joint research effort of IBM and the University of
Limburg (project code 561553). Finally, we would
like to thank Loek Schoenmaker for constructing
the X-interface for the tournament version of Vic-
toria.

References

Allis, L.V. (1994). Games and Artificial Intelli-
gence. Ph.D. thesis in preparation, Department of
Computer Science, University of Limburg, Maas-
tricht, The Netherlands.

Allis, L.V., Meulen, M van der, and Herik, H.J. van
den (1994). Proof-Number Search, accepted for
publication in Artificial Intelligence. Also pub-
lished in a provisional version as Report CS 91-01,
Department of Computer Science, University of
Limburg, Maastricht, The Netherlands.

Allis, L.V. and Schoo, P.N.A. (1992). Qubic
Solved Again. Heuristic Programming in Artificial
Intelligence 3: the third computer olympiad (eds.
H.J. van den Herik and L.V. Allis), pp. 192-204.
Ellis Horwood Ltd., Chichester, England.

Beal, D.F. (1989). Experiments with the Null Move.
Advances in Computer Chess 5 (ed. D.F. Beal), pp.
65-79. Elsevier Science Publishers B.V., Amster-
dam, The Netherlands.

Groot, A.D. de (1965). Thought and Choice in
Chess (ed. G.W. Baylor) Translated from the Dutch
version from 1946. Second edition 1978. Mouton
Publishers, The Hague.

Herik, H.J. van den (1983). Computerschaak,
Schaakwereld en Kunstmatige Intelligentie. Ph.D.
thesis, Academic Service, The Hague, The Nether-
lands.

Herik, H.J. van den (1990). Synthesis of Reliable
Plans from Low-Order Knowledge. Description of
SION project no. 612-332-021, The Netherlands
Organization for Scientific Research.

Herik, H.J. van den, and Allis, L.V. (eds.) (1992).
Heuristic Programming in Artificial Intelligence 3:
the third computer olympiad. Ellis Horwood Ltd.,
Chichester, England.

Knuth, D.E. and Moore, R.W. (1975). An Analysis
of Alpha-Beta Pruning. Artificial Intelligence, Vol.
6, No. 4, pp. 293-326.

Kopec, D. and Bratko, I. (1982). The Bratko-Kopec
Experiment: A Comparison of Human and

- 10 -

Computer Performance in Chess. Advances in
Computer Chess 3 (ed. M.R.B. Clarke), pp. 57-72.
Pergamon Press, Oxford, England.

Levinson, R.A., Beach, R., Snyder, R., Dayan, T.,
and Sohn, K. (1992). Adaptive-Predictive Game-
Playing Programs. Journal of Experimental and
Theoretical Artificial Intelligence, Vol. 4, pp. 315-
337.

Levy, D.N.L., and Beal, D.F. (1989). Heuristic
Programming in Artificial Intelligence: the first
computer olympiad. Ellis Horwood Ltd., Chiches-
ter, England.

Levy, D.N.L., and Beal, D.F. (1991). Heuristic
Programming in Artificial Intelligence 2: the second
computer olympiad. Ellis Horwood Ltd., Chiches-
ter, England.

Newell, A., and Simon, H.A. (1972). Human Prob-
lem Solving. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey.

Nilsson, N.J. (1980). Principles of Artificial Intelli-
gence. Tioga Publishing Company, Palo Alto, Ca.

Sakata, G. and Ikawa, W. (1981). Five-In-A-Row.
Renju. The Ishi Press, Inc., Tokyo, Japan.

Uiterwijk, J.W.H.M. (1992a). Go-Moku still far
from Optimality. Heuristic Programming in Artifi-
cial Intelligence 3: the third computer olympiad
(eds. H.J. van den Herik and L.V. Allis), pp. 47-50.
Ellis Horwood Ltd, Chichester, England.

Uiterwijk, J.W.H.M. (1992b). Knowledge and Stra-
tegies in Go-Moku. Heuristic Programming in
Artificial Intelligence 3: the third computer olym-
piad (eds. H.J. van den Herik and L.V. Allis), pp.
165-179. Ellis Horwood Ltd, Chichester, England.

Uiterwijk, J.W.H.M. (1992c). Personal Communi-
cation.

Appendix A

Below we provide example lines of the solution to
the Go-Moku variants announced in section 2. The
sequence of moves is numbered in the diagrams.
Diagram 5a contains the longest line of the non-
restricted Go-Moku solution and Diagram 5b the
longest line of our standard Go-Moku solution.

27

26 17 28 20

16 18 19

9 10 11 5 23 21 24

6 1 7 25 39 22

3 2 31 29 35 36

4 13 12 8 32 33 30

14 37 34

15

38

Diagram 5a: Non-restricted Go-Moku solution.

38 42

44 34 37

40 39 25 33 35 36

41 24 17 31 20 28

43 16 18 19 27

9 10 11 5 32 21 26

45 6 1 7 23 22

3 2 30

4 13 12 8 29

15

14

Diagram 5b: Standard Go-Moku solution.

Appendix B

Below we have reproduced Victoria’s gamescores
of all eight games played at the 4th Computer
Olympiad in London (5-11 August, 1992).

- 11 -

6

18 5 2

15 16 13 1 10

22 17 14 4 3

23 19 24 11 9 12 7

20 21 32 8

30 29 25 27 28

31 26

33

Diagram 6a: Victoria (B) vs. Neuron (W)

6

2 10 5

12 1

3 7 8 16

4 9 17 15 18

14 11 20

24 13 23 21 19 25

22

Diagram 6b: Victoria (B) vs. Xokk (W)

25

23

21 20 4 6 14 15 12

1 8 11 17

2 22 3 13 19

10 7 9 5 16 24

18

Diagram 6c: Victoria (B) vs. Polygon (W)

22

28 23 21

20

11 18 6

24 27 10 1 4

19 12 3 2 9

16 13 5 7 8

25 17 15

26 29 14

Diagram 6d: Victoria (B) vs. Zero Club (W)

25

19

13 11 14 22

20 12 21

9 10 15 5 23

6 1 7 24

3 2 18

4 8

17

16

Diagram 6e: Neuron (B) vs. Victoria (W)

10

9 21 18

7 13

19 20 5 17 1 6 15

25 3 2 14

4 11 8

16 12

22

23 24

26

Diagram 6f: Xokk (B) vs. Victoria (W)

- 12 -

94

92 93

91 86 82

74 89 90 87 71 75 78

67 64 81 79 83

95 68 60 61 85 80 84

70 69 57 65 63 66 3 88 8 7

56 55 20 10 1 9 11 13 14

44 58 21 5 2 4 12 17 16

73 43 46 52 6 40 15 29 18 19

72 42 45 59 35 53 31 22 23

62 51 41 38 39 27 24 26

36 37 49 34 25 28

47 50 54 33 30 77

32 48 76

Diagram 6g: Polygon (B) vs. Victoria (W)

57 54

15 16 58 56

22 14 23 42 37 20 28 36

21 19 10 13 17 41

18 5 6 9 11 24 44 46

7 4 1 25 27 32 43 45 47

8 3 2 26 33 35 40

12 50 29 49 39 31 34 55

51 38

52 53 30 48

Diagram 6h: Zero Club (B) vs. Victoria (W)

