
Admissibility in Opponent-Model Search

H.H.L.M. Donkers J.W.H.M. Uiterwijk H.J. van den Herik

Department of Computer Science,
Institute for Knowledge and Agent Technology,

Universiteit Maastricht, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
email: {donkers,uiterwijk,herik}@cs.unimaas.nl

Abstract

We start with showing experiments in the game Lines of Action (LOA)
that hint at the existence of a large risk in using Opponent-Model (OM)
search. Then the nature of the risk is investigated and its consequences are
unveiled. It appears that, in contrast to Minimax, OM search is sometimes
unable to repair large errors in the evaluation function(s). The result is that
OM search, even when used in the ideal situation of perfect knowledge on
the opponent, can lead to bad move decisions. Only when the pair of evalu-
ation functions is admissible, OM search can be used safely and successfully.
Unfortunately, in practice, admissibility is very difficult to achieve.

1 Opponent-Model Search

OM search [3] is a game-tree search algorithm designed to use knowledge on the
opponent in order to exploit weak points in the opponent’s search strategy. The
algorithm is based on three strong assumptions on the opponent and the player.
The first assumption is that the opponent (called min) uses a Minimax algorithm
(or equivalent) with an evaluation function (Vop), a search depth and a move
ordering that are known to the first player (called max). The second assumption
is that max uses an evaluation function (V0) that is better than the opponent’s
evaluation function. Third, it is assumed that max searches at least as deep as
min. Informally, OM search is a derivative of Minimax in which max maximizes
at max nodes, but selects at min nodes the moves that min would select.

2 LOA experiments

To investigate the actual effectiveness of OM search, we performed some exper-
iments in the domain of LOA, a board game invented by Claude Soucie (and
described in [7]). It is played on an 8 × 8 checkers board. The starting player
uses twelve black stones, the other player uses twelve white stones. The black
stones are placed in two rows along the top and bottom of the board, while the
white stones are placed in two rows at the left and right edge of the board (the
four corner squares remain empty). The object of the game is to move the stones
until all stones of one colour are connected. The players move in turn. A player
may move only one stone at the time (i.e., per turn) in a straight line in any of



the eight principal directions. The step length of the move is exactly equal to the
total number of stones on the line of movement. Jumping is only allowed over the
own stones. When the move lands on an opponent’s stone, this stone is captured.
In the implementation used in the experiments, a repetition of a board situation
instantaneously ends the game (in a draw).

The game of LOA was selected for the experiments because the game is not
trivial and also not too complex. Furthermore, there are very different evalua-
tion functions available, which allows for the application of OM search. In the
experiments, three evaluation functions are used. The first one (Vc) is a simple
centre-oriented function that assigns values to stones depending on their board
position: the four centre squares yield 10 points, their 12 surrounding squares
yield 5 points, and the 20 squares surrounding the latter squares yield 1 point.
The remaining 28 border squares yield no points. Opponent stones receive the
same amount of points (expressed as minus points). The score of a board position
is the total sum of all points assigned to the stones. Of course, in practice many
additional aspects are used to evaluate a position. Two other evaluation functions
(VNNa and VNNb) used in the tournament are neural-network functions. They
are adopted from Kocsis’ research on training neural networks to evaluate board
positions in LOA [5].

We conducted three tournaments between artificial LOA players with the fol-
lowing set-up. In every tournament we tested two evaluation functions (indicated
here by V1 and V2). In the tournaments the first player used OM search (with
V0 = V1 and Vop = V2) and the second player used α-β (with V2). The evaluation
function that the first player assumed for min was the same one that the second
player actually used. So, the first player had perfect information of the opponent.
To be able to compare the results of OM search with α-β, each tournament was re-
peated, but now both players used α-β, the first player using V1, the second player
V2. The tournaments consisted of 30 different positions that had to be played to
the end. Every position had to be played twice, reversing colours, i.e., the total
number of games was 60. To investigate the influence of the search depth, every
position was played using four different search depths (d = 2, 3, 4, and 5). No
time limit was given.

The results of the LOA tournaments are presented in Tables 1, 2 and 3. For
every LOA position in a match, a player obtains 2 points if the game played from
that position is won by the player, 1 if the position leads to a draw, and 0 if the
position is lost. The result of a match is the difference of points in that match.

V1 = VNNa, V2 = VNNb

d OM vs. α-β res α-β vs. α-β res
2 72 - 48 24 69 - 51 18
3 54 - 66 −12 62 - 58 4
4 58 - 62 −4 63 - 57 6
5 52 - 68 −16 50 - 70 −20

Table 1: Results of the first LOA tournament.

The first tournament (see Table
1) was between the two neural-
net evaluators. From the fifth
column it follows that the differ-
ence in quality between the two
neural-net evaluators is not sig-
nificant. However, the results for
OM search are disappointing, es-
pecially for the depths 3 and 4.

Although the opponent model is correct, the player using OM search is hardly



able to profit from the knowledge given. At search depths 3 and 4, using OM
search with the correct opponent model even leads to a decrease in quality!

V1 = VNNa, V2 = Vc

d OM vs. α-β res α-β vs. α-β res
2 59 - 61 −2 58 - 62 −4
3 54 - 66 −12 72 - 48 24
4 44 - 76 −32 69 - 51 18
5 44 - 76 −32 72 - 48 24

Table 2: Results of the second tournament.

Because the two evaluation func-
tions (VNNa and VNNb) are rela-
tively close to each other, a new
tournament was held between the
evaluation functions VNNa and
Vc, of which we believed that Vc

is much weaker than VNNa. From
the fifth column in Table 2 follows
that VNNa indeed is stronger than
Vc, but the difference in quality is not overwhelming. However, the results for OM
search in this tournament are disastrous. From a winning evaluation function,
using the correct opponent model, OM produces a badly-losing player.

V1 = Vc, V2 = VNNa

d OM vs. α-β res α-β vs. α-β res
2 63 - 57 6 62 - 58 4
3 56 - 64 −8 48 - 72 −24
4 46 - 74 −28 51 - 69 −18
5 42 - 78 −36 48 - 72 −24

Table 3: Results of the third tournament.

Since OM search went so wrong in
this tournament, a third tourna-
ment was held in which the eval-
uation functions switched place.
This was done in order to see
whether the error in OM search
would diminish. Of course, the
scores in the fifth column of Ta-
ble 3 are just the opposites of the

ones in Table 2. Now we see that the quality of the OM player is on average
slightly better than in the previous tournament, but still not as good as α-β, and
certainly not as good as we expected from OM search.

In conclusion, we remark that in all three tournaments, the OM player was
given a serious advantage because the search depth is kept constant, independent
of the time that is needed to search the tree. The intriguing question now is: what
went wrong with OM search?

3 Risk in Opponent-Model Search

The assumptions that form the basis of OM search give rise to two types of risk.
The first type of risk arises from imperfect knowledge on the opponent. When min
is using a different evaluation function than assumed, or a different search depth
or move ordering, min might select another move than the move that max expects.
This type of risk has been described and analyzed in [4]. In the LOA experiments
above, this risk is not present because max has perfect knowledge of the evaluation
function of min. The second type of risk arises from the quality of the evaluation
functions used. The assumption is that max uses an evaluation function that is
better than min’s evaluation function. This assumption leads to two questions:
what does ‘better’ mean and what happens if max’s evaluation function is not the
better one? In order to define ‘better’, a more detailed discussion of evaluation
functions in game trees is needed.



3.1 Static Evaluation Functions

A static evaluation function (or evaluation function for short) is used to compute a
substitute for the game-theoretic value of a node in a search tree. It is called static
because it only uses the static information from the game position at that node.
The evaluation function is used when the game-theoretic value of the position is
unknown.

In the ideal case, the evaluation value of a node is related to its game-theoretic
value. An evaluation function is called perfect if at all max (min) nodes P in the
game tree, the child of P with the highest (lowest) evaluation value also has the
highest (lowest) game-theoretic value among its siblings. Clearly, if such a perfect
evaluation function is available, search is unnecessary. In passing we note that
Christensen and Korf [1] use a definition of perfect evaluation functions (Perfect
Play) that is too strict. In their definition, a perfect evaluation function must yield
the game-theoretic value for end positions and furthermore, making an optimal
move must not change the evaluation value.

Perfect evaluation functions are not available for games that are of interest for
game researchers in AI, except for the knowledge implicit in endgame databases.
Hence, imperfect evaluation functions must be used. There are two ways to inter-
pret imperfect evaluation functions. The first interpretation is that of an estimator
of the probability to win the game from a position. This interpretation is often used
by researchers that apply temporal-difference learning or other machine-learning
techniques in games. The second interpretation of an evaluation function is that
of an estimator of the profitability of a position. This second interpretation is used
in most game-playing programs.

The probability interpretation of evaluation functions does not make sense in
relation to OM search, because the probability to win is related to the strength of
the opponent. Evaluation functions in OM search must therefore be interpreted
in terms of profitability. Unfortunately, the concept of profitability is not exact
and not measurable. In spite of this, assume that an evaluation function W exists
that measures the profitability exactly. This function, by definition, is a perfect
evaluation function. Furthermore, W should bare the property for all positions P
and Q that if W (P ) ≥ W (Q), the game-theoretic value of Q should not be lower
than that of P . Imperfect evaluation functions are estimations of this function W ,
if the profitability interpretation is used. Now a ‘better’ evaluation function can
be interpreted as a function that estimates W better. Of course, there are many
ways to define estimation and, hence, to define ‘better’. Fortunately, OM search
itself provides a solution that will be exposed in the next subsection.

Before doing so, one additional definition has to be given. Two evaluation
functions V1 and V2 are called equivalent if they impose the same order on positions
(V1(P ) ≥ V1(Q) ⇔ V2(P ) ≥ V2(Q)).

3.2 Estimation errors in evaluation functions

How does the quality of the evaluation functions V0 and Vop influence the perfor-
mance of OM search? If V0 is a perfect evaluation function and Vop is not, then
clearly OM search will be successful. But V0 being perfect discharges us from



using any search at all. Also if V0 and Vop are equivalent, then OM search will
be successful. But in this case, OM search will behave equal to Minimax and the
extra efforts of OM search are a waste of time. But if V0 and Vop are not equivalent
and V0 is not perfect, under which conditions will OM search then be guaranteed
to be successful?

To give a clear answer to this question, the following alternative view on OM
search is presented. Let T be the game tree that is under consideration by OM
search. At every min node P , min determines which branch is selected. Let Tmin

be the subtree of T in which all branches at min nodes are removed, except for
the branches selected by min and let Pmin be the set of positions corresponding
with the leafs of Tmin. The remaining task of max is to find the position P ∗ in
Pmin that has the largest value of V0.

Obviously, evaluation function Vop determines set Pmin, and V0 determines P ∗.
Assume that V0 and Vop start as perfect evaluation functions (V0 = Vop = W ).
Assume further that we introduce estimation errors in V0 and/or Vop. These are
modifications in the evaluation functions that change the order that the functions
impose on the positions. Estimation errors in V0 and Vop only have effect on the
outcome of OM search if they influence Pmin or P ∗. There are four types of
estimation errors that can lead to such an effect.

Type-I error: V0 overestimates a position in Pmin This is the most serious
error of OM search. V0 can overestimate any of the positions in Pmin and select
any of them as the maximum. A type-I error is “repaired” if Vop also sufficiently
overestimates the position that was overestimated by V0. The overestimation by
Vop of this position causes it to be removed from Pmin.

Figure 1: Example of a type-I error and a repair of this error.

The left tree in figure 1 gives an example of a type-I error. In the figure, the
numbers inside the nodes give the true values (W ) of the profitability of the nodes.
Next to the nodes the values of V0 and Vop (or v0 and vop for the internal nodes)
are given. Two additional values are presented at an internal node: mmx is the
minimax value that max would obtain if V0 was used with minimax, and obt gives
the truly obtained profitability for max, e.g., the true value of the chosen variation.



Figure 2: Example of a type-II
error.

In the example a type-I error is generated
by max’s overestimation of the right-most leaf.
This causes that max beliefs to obtain a value
of 9 but in reality, max only obtains 2, which
is 4 less than the true profitability of the root.
The tree at the right gives a possible repair
for this error. If min sufficiently overestimates
the same position that max overestimates, this
position will not be selected by min anymore.
The difference between believed and obtained
value disappears (both values are now 8).

Type-II error: V0 underestimates a posi-
tion in Pmin This error is less serious for max
because it only results in another move if the
best position P ∗ is underestimated (figure 2).

Furthermore, if P ∗ is heavily underestimated, the second-best position will take
its place and the overall harm is limited. Type-II errors are also repaired when
Vop overestimates the same positions, causing them to disappear from Pmin.

Type-III error: Vop underestimates a position that enters Pmin This is
the major error for min. By underestimation, any position could enter Pmin, even
positions that are very unprofitable for min (see figure 3, left). max can profit
the most from this error. The error is repaired if V0 also underestimates these
positions.

Figure 3: Example of a type-III error and a type-IV error.

Type-IV error: Vop overestimates a position in Pmin The last type of error
is less serious for min. It causes a position to disappear from Pmin (see figure 3,
right). min is not able anymore to profit from opportunities in this position, but
a second-best position will take its place. This type of error cannot be repaired.

Errors due to overestimation and underestimation are not unique for OM
search, but the effect of these errors in Minimax is bounded by the value of siblings,



just like the errors of type II and IV above. A single underestimation or overes-
timation cannot do much harm in Minimax, whatever the size of the error. The
example in Figure 1 illustrates this. The overestimation of the right-most leaf with
any amount larger than 8 causes Minimax to select the sibling of this node. Once
this sibling is selected, the extent of the overestimation does not matter anymore.
In OM search, the extent matters seriously. The value v0 of the root depends
on this overestimated value. If the example tree is a subtree of a larger search
tree, this root value will be propagated up this larger search tree. The larger the
overestimation, the larger the damage will be that it causes in this search tree.
A single large type-I error can thus cause major damage to the position of max.
Fortunately, there is also another side of this coin: a single large type-III error can
lead max to a certain win.

4 Admissibility

For OM search to be at least as successful as Minimax, type-I errors are undesir-
able. The relation between V0 and Vop must be such that type-I errors do not (or
rather unlikely) happen. Furthermore, type-III and type-IV errors should occur
as often as possible in order to let OM search profit from them. This leads to the
following condition on the evaluation functions V0 and Vop:

Admissible pair A pair of evaluation function (V0, Vop) is admissible for OM
search if V0 is a better profitability estimator than Vop, and when V0 never over-
estimates a position that Vop does not overestimate likewise.

Notice that this condition seems too strong, because only type-I errors should
be avoided. But since it is impossible to foresee all search trees for a given game,
we have to stay on the safe side. The condition is also not sufficient to prevent
type-I errors completely. Especially when the quality of V0 is poor, the repair of
type-I errors might fail because in such case it could happen that all children of
one min node are seriously overestimated, and one of them enters Pmin. But in
such case, also Minimax would yield bad results.

Managing the risk of estimation errors in OM search is analogous to risk man-
agement in the heuristic optimization algorithm A∗. In order for A∗ to result in an
optimal solution, the heuristic function h() must be admissible, which means that
h() should never overestimate the real distance (h∗()) to the goal. This restriction
on h() is quite similar to the restrictions stated above. Pearl [6] provides a sug-
gestion on how to discover an admissible function h(): create a simplified model
of the problem domain by either relaxing or overconstraining the original model
of the problem domain. Then use the distance function of the simplified model as
an estimate of the true distance. The construction of the simplified model must
be such that it can be proven that h() is admissible.

Although this model-based approach to heuristic functions is also used in
manually-built static evaluation functions for games, the need for some kind of
admissibility only appears in OM search. It is possible to apply Pearl’s method
to produce suitable pairs of evaluation functions. Instead of one simplified model,
now two models are needed, one for max and one for min. The model for min



should be almost the same as max’s, but it must clearly overlook some aspects of
the game. By building an evaluation function based on these simplified models, it
is likely that these evaluation functions are suited for OM search. (An example of
this method would be to take a regular chess evaluation function for max and to
give min the same function but leaving out the threats by the opponent’s knights.)

Analogous to the situation in A∗, complete admissibility is not always neces-
sary. If suboptimal solutions are acceptable in A∗, non-admissibility is tolerable
to a certain extent. For OM search, minor non-admissibility is acceptable if the
extent of the estimation errors is limited, e.g., when the quality of the evaluation
function V0 is high.

5 Conclusions

Unless (nearly) admissible pairs of evaluation functions are used, it is unwise to
apply OM search. The experimental evidence and the theoretical argumentation
make this clear. This does not mean that OM search must be abandoned. In some
cases, it will be possible to construct admissible pairs of evaluation functions, in
other cases, the quality of the evaluation function V0 is known to be sufficiently
high to allow non-admissibility. A third approach is to adapt OM search in such
way that the disadvantage of the possible errors is alleviated. One such adaptation
is called probabilistic OM search, which is described in [2].

References
[1] Christensen, J. and Korf, R.E. (1986). A Unified Theory of Heuristic Evaluation

Functions and its Application to Learning. Proceedings of the AAAI’86, pp. 148–
152.

[2] Donkers, H.H.L.M., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2001). Proba-
bilistic Opponent-Model Search. Information Sciences, 135(3-4), pp. 123–149. ISSN
0020-0255.

[3] Iida, H., Uiterwijk, J.W.H.M., Herik, H.J. van den, and Herschberg, I.S. (1993,
1994). Potential Applications of Opponent-Model Search. Part 1: The Domain of
Applicability. ICCA Journal, 16(4), pp. 201–208. Part 2: Risks and Strategies. ICCA
Journal, 17(1), pp. 10–14. ISSN 0920-234X.

[4] Iida, H., Kotani, I., Uiterwijk, J.W.H.M., and Herik, H.J. van den (1997). Gains
and Risks of OM Search. In Advances in Computer Chess 8 (eds. H.J. van den
Herik and J.W.H.M. Uiterwijk), pp. 153–165. Universiteit Maastricht, Maastricht,
The Netherlands. ISBN 90-6216-2347.

[5] Kocsis, L., Uiterwijk, J.W.H.M., and Herik, H.J. van den (2000). Learning Time
Allocation using Neural Networks. In Working Notes of the Second International
Conference on Computers and Games, CG’2000, pp. 297–314. Hamamatsu, Japan.

[6] Pearl, J. (1984). Heuristics, Intelligent Search Strategies for Computer Problem
Solving. Addison-Wesley Publishing Company, Reading, Massachusetts. ISBN 0-
201-05594-5.

[7] Sackson, S. (1992). A Gamut of Games. Dover, New York, NY. ISBN 0-486-27347-4.


